
www.manaraa.com

Scholars' Mine

Masters Theses Student Research & Creative Works

Summer 2010

A pilot study in an application of text mining to
learning system evaluation
Nitsawan Katerattanakul

Follow this and additional works at: http://scholarsmine.mst.edu/masters_theses

Part of the Computer Sciences Commons
Department:

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Masters Theses by an
authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Recommended Citation
Katerattanakul, Nitsawan, "A pilot study in an application of text mining to learning system evaluation" (2010). Masters Theses. 4771.
http://scholarsmine.mst.edu/masters_theses/4771

http://www.mst.edu/?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.mst.edu/?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/student_work?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/masters_theses/4771?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


www.manaraa.com



www.manaraa.com

 

 
 
 
 
 
 

A PILOT STUDY IN AN APPLICATION OF TEXT MINING 
 

TO LEARNING SYSTEM EVALUATION 
 

 
by 
 
 

NITSAWAN KATERATTANAKUL 
 

 
A THESIS 

 
 

Presented to the Faculty of the Graduate School of the  
 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 
 

In Partial Fulfillment of the Requirements for the Degree 
 
 

MASTER OF SCIENCE IN INFORMATION SCIENCE AND TECHNOLOGY 
 

 
 

2010 
 

Approved by 
 
 

Dr. Wen-Bin Yu, Advisor 
Dr. Ronaldo Luna 

Dr. Richard H. Hall 
 
 

 

 

  



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

iii 

 

 

ABSTRACT 

Text mining concerns discovering and extracting knowledge from unstructured 

data. It transforms textual data into a usable, intelligible format that facilitates classifying 

documents, finding explicit relationships or associations between documents, and 

clustering documents into categories.  

 Given a collection of survey comments evaluating the civil engineering learning 

system, text mining technique is applied to discover and extract knowledge from the 

comments. This research focuses on the study of a systematic way to apply a software 

tool, SAS Enterprise Miner, to the survey data. The purpose is to categorize the 

comments into different groups in an attempt to identify “major” concerns from the users 

or students. Each group will be associated with a set of key terms. This is able to assist 

the evaluators of the learning system to obtain the ideas from those summarized terms 

without the need of going through a potentially huge amount of data.  
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1. INTRODUCTION 

1.1. CIVIL ENGINEERING LEARNING SYSTEM 

The development of the civil engineering learning system (Luna, 2007) was 

funded by the National Science Foundation (NSF) to introduce Geographic Information 

System (GIS) to undergraduate students enrolling in a typical civil engineering program. 

The system consists of five modules in the areas of environmental, geotechnical, 

surveying, transportation, and water resources, since these topics are standard topics in 

civil engineering programs nationwide. This civil engineering learning system enables 

faculty to bring practical applications to the classroom in an effort to enhance traditional 

instruction.   

 

 

1.2. SURVEY FOR LEARNING SYSTEM EVALUATION 

The civil engineering learning system is improving while being used in the 

classrooms. The evaluation process is ongoing as part of the iterative system 

development life cycle for the learning system. Surveys were conducted a week after 

each class to evaluate effectiveness of instruction and the civil engineering learning 

system itself. An example of the survey is illustrated in Appendix A. Each survey 

contained both quantitative and qualitative questions. Quantitative questions (i.e., 

multiple choices, true/false questions) are relatively easy to be analyzed since statistical 

and scientific techniques can be applied directly to the results. However, the qualitative 

part including open-ended questions requires human effort to read all feedback from 

students in order to come up with conclusions. Text mining is a useful technique which is 

able to handle unstructured textual data. Therefore, this research aims to apply text 

mining to the survey comments from students in an effort to assist the evaluation team 

with the analysis of qualitative data. 
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1.3. INTRODUCTION TO TEXT MINING 

A vast amount of documents are available in the form of books, journals, 

newspapers, web pages, blogs, databases, and so on. A large amount of knowledge and 

vital information are embedded into these documents. Humans need to read and analyze 

substantial documents in order to gain useful insights. In a business environment, faster 

reactions, more information, and better decision-making are key competitive advantages 

to becoming successful in business. Thus, it is important to receive right information at 

the right time and in the right place. However, information is sometimes growing rapidly 

than we can absorb. In the past, there have been a lot of studies proposing approaches to 

assist knowledge discovery from data. The well-known concepts include information 

retrieval (IR), information extraction (IE), natural language processing (NLP), and data 

mining (DM). IR aims to gather targeted documents which match the specified query 

from the huge amount of documents and provide them to users. The main focus is on a 

search engine which searches a collection of documents with keywords. However, users 

have to read through each of the retrieved documents to locate the information they want. 

Therefore, without the need of human effort, IE plays an important role to identify and 

extract a range of specific types of information from texts of interest and present only 

relevant information. NLP allows users to construct language in a grammatical structure 

which helps a machine to understand language and interpret documents. Most knowledge 

discovery systems in NLP are based on such a concept. Data mining (DM) is a 

knowledge discovery method which uncovers patterns and insightful knowledge from 

structured data in databases.  

Text mining (TM) adopted techniques from well-established scientific fields such 

as data mining (DM), machine learning, information retrieval (IR), natural language 

processing (NLP), case-based reasoning, statistics and knowledge management 

(Sirmakessis, 2004). TM is a variation of DM performing on unstructured data such as 

textual documents. However, TM have been expanded from traditional IR and IE 

approaches, and based on NLP. It focuses on identifying patterns and relationships in 

texts rather than matching and extracting key words. More discussion of these concepts is 

provided in the next section.      
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2. LITERATURE REVIEW 

2.1. DEFINITION OF TEXT MINING 

Text mining is considered a sub-specialty of Knowledge Discovery from Data 

(KDD) (Liddy, 2000). Feldman et al. (Feldman & Sanger, 2007) broadly defined text 

mining as a knowledge-intensive process in which a user interacts with a document 

collection over time by using a suite of analysis tools. To be more specific, the process is 

aimed to understand and interpret semistructured and unstructured data (Sirmakessis, 

2004) in order to discover and extract knowledge from them, unlike data mining, which 

discovers knowledge from structured text (Ananiadou & McNaught, 2006). Text mining 

retrieves the hidden knowledge and presents it to users in a concise form (Ananiadou et 

al., 2006). It can be considered as data mining of textual data (Olson & Shi, 2007). 

Uramoto et al. (2004) added that the technology of text mining enables patterns and 

trends to be discovered semiautomatically from the huge collections of unstructured data. 

Ananiadou and McNaught (2006) mentioned that text mining includes three major 

activities: information retrieval (IR), information extraction (IE), and data mining (DM). 

These activities are not explicitly included in the text mining process as steps. Text 

mining optionally inherits some of their techniques to deal with specific problems in each 

step throughout the entire process. Moreover, since text mining attempts to discover 

hidden knowledge in texts, it is essential that the structure and nature of language should 

be taken into account. Thus, natural language processing (NLP) is usually applied in text 

mining process. In addition, sentiment analysis is an analyzing approach which has been 

applied effectively in many text mining applications. These computer science concepts 

are considered related areas of text mining and described more in detail in the following 

subsections. 

2.1.1. Information Retrieval (IR).  This is a process of selecting documents 

which meet the users’ requirements (Nasukawa & Nagano, 2001; Liddy, 2000) and 

respond to the need of information with the aid of indexes (Ananiadou et al., 2006). IR 

gathers relevant texts (Ananiadou & McNaught, 2006). 

The traditional IR systems usually applied index terms to index and retrieve 

documents (Baeza-Yates & Ribeiro-Neto, 1999). The systems detect and extract 
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documents of interest, matching the given query (Feldman & Sanger, 2007), from the 

huge amount of documents (Nasukawa & Nagano, 2001) and present them to the user 

(Choudhary et al., 2009), but require the user to read through the documents to locate the 

relevant information (Feldman & Sanger, 2007). Since it requires users to specify a query 

to select data that they want, the technology is limited when users do not have clear 

intention of what they need (Nasukawa & Nagano, 2001).  

With word matching approach, the problem is sometimes oversimplified since a 

lot of semantics in documents or user queries may be lost when the user’s intention is 

replaced with a set of words (Baeza-Yates & Ribeiro-Neto, 1999). Also, matching 

queries with the index terms, representing documents, may cause the retrieved documents 

irrelevant to the requests. Therefore, one major concern in IR is to distinguish between 

relevant and irrelevant documents. Ranking algorithms were applied to assist such 

decision. The algorithms establish a simple ordering of the retrieved documents, 

according to the document relevance. IR models have been designed, based on these 

characteristics, to serve IR purposes. There are three classic models in IR which are 

Boolean, vector-space, and probabilistic models.  

 Boolean Model: It is a simple model based on set theory and Boolean algebra. 

The requests are represented as Boolean expressions carrying precise 

semantics. Its advantages are simplicity and the clean formalism behind the 

model while the major disadvantage is exact matching which may lead to too 

many or too few retrieved documents. 

 Vector-Space Model: This algorithm assigns non-binary weights to index 

terms. The weights are used to calculate the degree of similarity to partially 

consider documents which match the queries. Therefore, the resulted ranking 

is more precise than the Boolean model. The term-weighting scheme 

improved retrieval performance. Moreover, partial matching allows 

approximately matched documents are retrieved. Also, the documents are 

ranked based on their degree of similarity to the requests. However, term 

dependencies reflecting discrimination of a term to the others in the document 

might hurt the overall performance. 
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 Probabilistic Model: This model is also known as the Binary Independence 

Retrieval (BIR) model. It addresses the IR problem within a probabilistic 

framework. The idea is to iteratively construct a probabilistic description (i.e., 

index terms with high probability to carry the semantics of the query) of the 

ideal answer set. Thus, the documents are ranked based on probability of 

being relevance; however, the algorithm has some disadvantages. First, the 

method does not take frequency of the index term appearing in the documents 

into account. Also, it requires initial guess for separation of relevant and 

irrelevant documents. 

2.1.2. Information Extraction (IE).  The goal of the process is to identify and 

extract a range of specific types of information from texts of interest (Ananiadou & 

McNaught, 2006) without requiring users to read the text (Ananiadou et al., 2006) as 

opposed to IR which reading is required to locate the information in the document 

(Feldman & Sanger, 2007). The process focuses on extracting concepts of the entire 

document rather than extracting the set of tags and keywords alone (Nasukawa & 

Nagano, 2001). IE application presents only the relevant information of interest 

(Choudhary et al., 2009) in “machine understandable” form rather than “machine 

readable” form (Feldman & Sanger, 2007). Basic types of elements which can be 

extracted from text are entities, attributes, facts, and events (Feldman & Sanger, 2007). 

Entities are basic building blocks (e.g., people, companies, locations, etc.) founded in text 

documents. Attributes refer to features of the extracted entities, for instance, title and age. 

Facts define relations existing between entities. Events are activities which entities 

participate in. 

2.1.2.1 Tasks in information extraction (IE).  Feldman and Sanger (2007) 

described several tasks involved in IE. First of all, name entity recognition (NE or NER) 

attempts to identify proper names and quantities in the text. In addition, template element 

tasks (TEs) separate domain-independent from domain-dependent aspects. It identifies 

only entities, not their relationships. Then, template relationship tasks (TRs) defines a 

domain-independent relationship between entities. Moreover, scenario templates (STs) 

explain domain and task-specific entities and relations to test portability to new domains. 
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Furthermore, coreference tasks (COs) record information which is symmetrical and 

transitive, especially identity relation (i.e., it marks nouns, noun phrases, and pronouns.) 

2.1.2.2 Information extraction (IE) process.  According to Feldman and Sanger 

(2007), IE can be illustrated in Figure 2.1. Most tasks in the process are NLP tasks. 

 

 

 

Figure 2.1. Typical Process of Information Extraction (IE) 

 

 

IE systems mostly employ a bottom-up approach, starting from identifying low-

level elements and then defining higher level elements based on the lower ones, for 

document analysis. For the first two stages, the main concerns are breaking the text into 

small tokens and tagging each of them by its part of speech. After lexical analysis, 

syntactic analysis is performed. The syntactic analysis involves some concepts in NLP; it 

is described more in detail in the NLP subsection. This phase starts from identifying 

proper names or entity extraction. Entities or keywords extraction are simply performed 

Tokenization
Zoning

Split the text document into basic constituents 

Morphological and Lexical Analysis
POS Tagging, Sense Disambiguiation

Assign POS tags to the words and create basic phrases as 
well as disambiguates ambiguous words and phrases

Syntactic Analysis
Shallow Parsing, Full Parsing

Create connections between different parts of each 
sentence, either by shallow or full parsing 

Domain Analysis
Anaphora Resolution, Integration

Establish frames describing relationships between entities
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based on dictionary lookup (Uramoto et al., 2004). It identifies various entity types (e.g., 

date, time, location, etc.) with the use of regular expressions using the context around the 

names, part-of-speech (POS) tags, syntactic features, and orthographic features. After 

basic entities are defined, the next task is shallow syntactic parsing and identifying nouns 

and verb groups. Feldman and Sanger (2007) and Sirmakessis (2004) described two 

common types of parsing: full syntactic parsing and shallow syntactic parsing. Full 

syntactic parsing performs a full syntactical analysis of sentences based on the certain 

theory of grammatical rules. As opposed to full parsing, shallow parsing sacrifices depth 

of analysis to increase speed and robustness since it parses only unambiguous parts, 

leaving the unclear ones unresolved. Shallow parsing is sufficient and much more 

preferable for IE purposes due to its speed. Noun and verb groups are constructed based 

on common patterns developed manually (Feldman & Sanger, 2007). Finally, the last 

phase, domain analysis, covers relation extraction and inferencing missing values to 

supplement the meanings. Relations between entities are built using domain-specific 

patterns which depend on the depth of the language analysis at the sentence level. 

Coreference or anaphora resolution is one of the main tasks in relation extraction. It 

matches pairs of NLP expressions referring to the same entity. Two main approaches to 

anaphora resolution are a knowledge-base, based on linguistic analysis, and machine 

learning, based on annotated corpus. 

2.1.3. Data Mining (DM).  Data mining is broadly defined as one of KDD’s 

subtasks (Liddy, 2000). It describes knowledge discovery which applies statistical, 

mathematical, artificial intelligence, and machine learning techniques to extract insightful 

information and knowledge from large databases (Turban et al., 2008). According to 

Ananiadou and McNaought (2006), DM finds associations among the pieces of 

information extracted from many different texts. Liddy (2000) referred it more narrowly 

to a step of applying algorithms to detect the hidden patterns which are found among 

formalized records. These patterns can be rules, trends, correlations, affinities, or 

prediction models (Turban et al., 2008). 

Feldman and Sanger (2007) compared and contrasted data mining with text 

mining. Data mining assumes that data is already in a structured format; thus, data mining 

processing focuses on scrubbing and normalizing data and creating extensive numbers of 
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table joins. By contrast, processing of text mining dominates on the identification and 

extraction of key terms and transformation of them into more structured format. 

Regardless of the process in detail, both text mining and data mining are similar in high-

level architecture since text mining adopted much inspiration and direction as well as 

core knowledge discovery operations from research in data mining. Text mining is 

considered the application of data mining techniques to automate knowledge discovery of 

unstructured text (Mooney & Nahm, 2005). Therefore, data mining techniques are 

applied in core-text mining processing and modeling such as classification, clustering, 

association rules, and decision trees. Clustering is the approach which is used in this 

research.  

Clustering: Clustering is an unsupervised process (Wagstaff et al., 2001) which 

classifies unlabeled objects into meaningful groups called clusters, without any prior 

information or pre-defined categories (Feldman & Sanger, 2007). The labels associated 

with the groups of objects are obtained from the data.  

Clustering determines the features which better describe objects in the set, intra-

cluster similarity, while distinguish objects in the set from the collection, inter-cluster 

dissimilarity (Baeza-Yates & Ribeiro-Neto, 1999). Intra-cluster similarity measures a raw 

frequency of a term ki inside a document dj, aka TF factor. Inter-cluster dissimilarity 

measures the inverse of the frequency of a term ki among the documents in the collection, 

aka inverse document frequency or IDF factor. Term weights which were introduced in 

the previous subsection were derived from this theory. IDF weighting focuses on inter-

cluster dissimilarity and tries to reduce the effect when the terms appearing in many 

documents are not useful for distinguishing documents. The product of TF and IDF (TF-

IDF) was proposed as a reasonable measure which tries to balance the two effects, intra-

cluster similarity and inter-cluster dissimilarity. 

According to Feldman and Sanger (2007) clustering can have different 

characteristics. It can be flat if it produces disjoint clusters, or can be hierarchical if the 

resulted clusters are nested. Clustering will be hard if every object belongs to exactly one 

cluster, whereas it will be soft when each object may belong to more than one cluster and 

have a fractional degree of membership in each cluster. There are three common types of 

clustering algorithms which are agglomerative, divisive, and shuffling. Starting with each 
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item in a separate cluster, the agglomerative algorithm merges clusters until the criterion 

for stop is met. By contrast, the divisive algorithm starts with all items stored in one 

cluster, and then split it into clusters until stopping criterion is satisfied. The shuffling 

algorithm redistributes objects into clusters.  

Turban et al. (2008) mentioned that most clustering techniques are based on a 

distance between pairs of the items. The distance measures similarity between every pair 

of the items. It can either be based on true distances or weighted averages of distances. 

The most commonly used clustering techniques are k-means method and Expectation-

Maximization (EM) (Feldman & Sanger, 2007). Both of them are spatial clustering 

techniques. However, k-means is hard, flat, and shuffling while EM is soft, flat, and 

probabilistic. Unlike k-means, EM is scalable and allows clusters to be of arbitrary size 

and shape (Bradley et al., 1998). In addition, EM is suitable when data are incomplete 

(i.e., missing, truncated, etc.) (McLachlan & Krishnan, 1997) The following subsection 

gave you an overview of the k-means method. Since EM was the technique being used in 

this research, it was discussed in more detail in the subsection of core mining processing 

stage of the text mining process. 

K-Means Method:  The K-means method is commonly used to partition a set of 

data into k groups automatically (Wagstaff et al., 2001); where the set of data is 

represented by a set of vectors. The algorithm starts with selecting k initial cluster seeds 

(i.e., centers) which can be externally supplied or randomly picked up among the vectors 

(Feldman & Sanger, 2007). Then, it iteratively refines the centers as the following steps. 

 Each vector is assigned to the cluster of the closest center, or seed 

 Each cluster center is calculated to be the mean of its current members. 

 If no change occurs in cluster assignments, stop the process; otherwise, repeat 

the process again 

The K-means algorithm maximizes quality of the cluster when the center 

maximizes the sum of similarities (i.e., inverse of a distance function) to all the vectors in 

the cluster. It does not derive statistical models of the data as well as does not allow 

clusters to be overlapped (Bradley et al., 1998). Due to its simplicity and efficiency, this 

method became popular. Nevertheless, if the set of initial seeds is bad, the resulted 

clusters are often much below the optimal standard. Given unknown number of clusters, 
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the best number can be computed by running the algorithm with different values of k and 

selecting the best one (Feldman & Sanger, 2007). 

2.1.4. Natural Language Processing (NLP).  Ananiadou et al. (2006) defined 

NLP as “the activity of processing natural language texts by computer to access their 

meaning.” 

2.1.4.1 Levels of language processing.  There are different levels of language 

processing: phonological, morphological, lexical, syntactic, semantic, and pragmatic 

levels (Salton & McGill, 1983). 

 Phonological Level: This level does not immediately involve in information 

retrieval of texts, but deals with understanding and recognizing speech sounds. 

 Morphological Level: The main concerns of this level are processing 

individual word forms and recognizable portions of words. Extensions of this 

knowledge include stemming as well as prefixes and suffixes recognition and 

removal. 

 Lexical Level: This level involves in operations on full words. The procedures 

cover common word deletion, dictionary processing of individual words, 

replacement of words by thesaurus classes, and identifying a set of linguistic 

features (i.e., noun, adjective, preposition, verb, etc.) for each word. 

 Syntactic Level: The level attempts to obtain structural description of a 

sentence. Thus, it groups words into structural units, such as noun phrases as 

well as the representation of grammatical structure as subject-verb-object 

groupings, based on the syntactic features and the structure in which the 

words are embedded.  

 Semantic Level: This level assigns the meaning of the text. It applies 

contextual knowledge to restructure a text into units which represent its actual 

meaning. 

 Pragmatic Level: The pragmatic level incorporates additional information 

(i.e., social environment) to define relationships between entities. 

For example, given a sentence “John is rowing a boat,” the morphological level 

stems “is rowing” to “row”. The lexical level identifies “John” and “boat” are nouns, 

“row” is a verb, and “a” is an article. The syntactic level recognizes the “John-row-boat” 
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grouping as a subject-verb-object group which represents grammatical structure of the 

sentence. The semantic level interprets the sentence by designating “John” as a 

complementary, differently from the original role which is a subject. Then, the new 

sentence is constructed as “A boat is rowed by John.”  In pragmatic level, additional 

knowledge is included in the analysis and informs that a thing cannot perform an action 

on a person; thus, "A boat row John” is impossible.  

2.1.4.2 Language processing and information retrieval (IR).  There is 

difference between language processing and information retrieval. Language processing 

attempts to convey the exact meaning of the text, whereas information retrieval aims to 

retrieve a particular document (Salton & McGill, 1983). Nevertheless, it is reasonable 

that retrieving a particular item of a certain subject requires all available related facts 

from the analysis of meaning of language understanding.  

For information retrieval purpose, the syntactic, semantic, and pragmatic levels of 

language processing are mainly involved. However, syntactic process is the greatest 

interest in information retrieval; it is covered in more detail in the following subsection. 

2.1.4.2.1 Structure of language processing in information retrieval (IR).  

According to Salton and McGill (Salton & McGill, 1983), the language processing 

system which is useful for information retrieval consists of three components described 

below. 

 Standardized, Formal Input: The text input must be represented in a 

standardized, formal representation, based on the meanings and dictionary. 

 Stored Knowledge Base: The input is compared with the knowledge base to 

add descriptions and define additional relationships between entities. 

 Task Performance: The required task is performed based on the combination 

of the input and the knowledge base. 

2.1.4.2.2 Syntactic analysis systems.  Syntax is an adjunct to language 

processing and beneficial to retrieval systems for sentence generation and sentence 

analysis. There are three important kinds of the syntactic analysis systems which are the 

phrase structure grammars, the transformational grammars, and the transition network 

grammars (Salton & McGill, 1983). 
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2.1.4.2.3 Phrase structure grammars.  Phrase structure grammars are simple 

grammars which account for generating and analyzing sentences. They are used to model 

basic structural properties of the language elements. A rule (1) is an example of the 

grammar for sentence generation 

S  NP + VP 

NP  T + N         (1) 

VP  V + NP 

where S, NP, VP, T, N, V are variables, respectively, for “sentence,” “noun phrase,” 

“verb phrase,” “article,” “noun,” and “verb. The derivation tree for a sentence “the man 

rows a boat” exhibits in Figure 2.2. The first line means the variable S can be rewritten as 

NP followed by VP. The second and third lines are translated in the same way. 

 

   

 

Figure 2.2. Phrase Structure Sentence Generation 

 

 

Nevertheless, there are problems with this kind of grammars. Discontinuous 

constituents (e.g., “sign up”) and the subject-verb agreement cannot be handled 

S 

NP VP 

T  N V NP 

the man row a boat 

T N 
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conveniently by the phrase structure grammars. For example, “the man signed up me” 

does not fall into the defined rule and it is not recognized the same meaning as “the man 

signed me up.” More rules have to be added to deal with such specific cases. Therefore, 

this led to the development of transformational grammars. The analysis part is also 

simple and straightforward. It rewrites rules until no nonterminal symbol remains.  

2.1.4.2.4 Transformational grammars.  Transformational grammars 

syntactically distinct sentences which are semantically equivalent. For instance, they 

introduce the use of context-sensitive rewrite rules (2) 

w A x  w B x        (2) 

where A is a nonterminal variable and B is a string of terminal or nonterminal characters. 

The rule means that when the variable A appears in the context w and x, A can be 

replaced by the string B. From the previous example, one more rule (3) can be added to 

fulfill the structure. 

signed + up + NP  signed + NP + up     (3) 

Subject-verb agreement can be handled in the similar way as well. The language 

analysis consists of two parts: the base component which generates the deep structure 

representing syntactic and semantic interpretation, and the transformational component 

which generates the surface structure reflecting the phonetic representation. The sentence 

analysis process is the reversal of the sentence generation process. 

2.1.4.2.5 Transition network grammars.  Transition network grammars are 

mostly used in modern automatic language processing systems. People believe that ATN 

grammars are simpler to handle operations than the other syntactic analysis process. The 

transition network grammars are so-called augmented transition network (ATN) 

grammars. Facilities in transformational grammars are inherited to ATN grammars, but 

more simple and practical. Most systems are based on a finite state machine. A simple 

network which is able to apply the sentence “the man rows a boat” is illustrated as an 

example in Figure 2.3.  

The ATN grammars actually generate a phrase structure tree along the processing 

from the first stage to the terminal stage. Each time a word is recognized, a node is 

created. Given the same sentence, “the man rows a boat,” and the transition network 

grammar in Figure 2.3, the final phrase structure tree from this process results in the same 
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tree as the one from the phrase structure grammar process in Figure 2.2. More detailed 

discussions and examples of the syntactic analysis systems can be researched from Salton 

and McGill (Salton & McGill, 1983). 

 

 

 

Figure 2.3. A Simple Transition Network Grammar 

 

 

Given the same sentence, “the man rows a boat,” and the transition network 

grammar in Figure 2.3, the final phrase structure tree from this process results in the same 

tree as the one from the phrase structure grammar process in Figure 2.2. More detailed 

discussions and examples of the syntactic analysis systems can be researched from Salton 

and McGill (Salton & McGill, 1983). 

2.1.4.3 NLP systems.  According to Ananiadou et al. (2006), “NLP systems can 

analyze (parser) natural language using lexical resources (dictionaries), where words 

have been organized into groups after a grammar (syntactic level) and a semantic layer 

has assigned meaning to these words or groups of words.” Since the output from this 

technique is not specific for any particular problem, it is typically employed for domain-

independent problem. Most of tasks in pre-processing stage of text mining are based on 
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NLP such as raw text cleaning, part-of-speech tagging, and stemming. NLP approaches 

are deductive in nature since they require robust vocabularies and ontologies to support 

the core mining process (Tremblay et al., 2009). 

2.1.5. Sentiment Analysis.  Sentiment analysis attempts to identify viewpoints 

underlying natural language texts (Pang & Lee, 2004). For instance, “thumbs up” and 

“thumbs down,” attached with movie reviews or videos, reflecting people’s sentiments 

towards the items. The major concern in sentiment analysis is to determine how 

sentiments are expressed in texts and what indications from the expressions are (i.e., 

positive or negative opinions) (Yu et al., 2007). It depends on ability to identify the 

sentimental terms in the documents (Godbole et al., 2007). Since opinions are usually 

expressed in complicated ways, they may not be addressed easily by simple text 

categorization approaches such as keyword identification (Mullen & Collier, 2004). 

Recognizing semantic of words and phrases is challenging since the textual constituents 

sometimes do not reflect the actual sentiments. Negative opinions possibly contain many 

positive words while they convey a strongly negative sentiment, and vice versa. 

Sentiment analysis can be implemented by using various techniques such as text 

mining (Bartlett & Albright, 2008) (Yu et al., 2007), natural language processing (NLP) 

(Nasukawa & Yi, 2003), or machine learning (Pang & Lee, 2004). Also, areas of its 

application are varied (Mullen & Collier, 2004), for example, newsgroups and customer 

trend and feedback tracking for customer relationship management (CRM) applications. 

 

 

2.2. TEXT MINING PROCESS 

Text mining involves techniques from several area, including information 

retrieval, information extraction, data mining (Choudhary et al., 2009; Ananiadou et al., 

2006), natural language processing, and machine learning (Choudhary et al., 2009; 

Uramoto et al., 2004). Different research papers proposed different processes and used 

different terminology for text mining process. The same term was sometimes referred to 

different processes and could be confusing. For instance, Liddy (2000) defined “Text 

Processing” as a stage where data mining algorithm was applied while Ananiadou et al. 

(2006) included it in information extraction stage which took place before data mining 
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was applied. Choudhary et al. (2009) even defined the entire text mining process as 

Knowledge Discovery in Text (KDT) and referred “text mining” as the last part of KDT 

when algorithms and tools were applied to the extracted information.    

Nevertheless, common text mining process can be broadly described as two main 

stages: pre-processing and core mining processing. They are the most critical activities 

for any text mining system (Feldman & Sanger, 2007). After these main stages, some 

included an analysis stage as well as a post-processing stage. Text analysis is the process 

to evaluate results whether the knowledge was discovered as well as to estimate its 

importance (Liddy, 2000). The post-processing is the phase where refinement techniques 

are used to filter redundant information and cluster closely related data (Feldman & 

Sanger, 2007). However, these stages are not commonly conducted and are found in rare 

cases. Figure 2.4 illustrates the entire process of text mining and the following 

subsections explained activities in each stage more in detail. 

 

 

 

Figure 2.4. Text Mining Process 

 

 

2.2.1. Pre-Processing.  Pre-processing stage (Coussement, 2008; Feldman & 

Sanger, 2007), text preparation (Liddy, 2000), or data preparation (Becker & Wallace, 

2006) retrieve the targeted documents and converts the original texts into suitable format 
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for the subsequent mining process. It includes all routines required to prepare data for the 

core mining process (Feldman & Sanger, 2007). Varieties of pre-processing techniques 

are existed in attempt to structure documents (Feldman & Sanger, 2007). Each starts with 

a partially structured document, then proceed to enrich structure, and finally end up with 

the most advanced and meaning-representing features which will be used for the core 

mining process (Feldman & Sanger, 2007). In order to apply mathematical and scientific 

methods to analyze the set of parsed terms effectively, the terms have to be converted 

into a quantitative format. Therefore, the goal of the pre-processing stage is to create a 

quantitative representation for the documents. Vector-space approach is the conventional 

model which is applied in this stage of text mining. The final representation of the 

collection of documents will be in a term-document frequency matrix. This representation 

is referred to as the “bag-of-words” approach (Sirmakessis, 2004). 

Consequently, pre-processing activities can be broadly divided into three stages 

which are preparatory processing, text parsing, and term-document frequency matrix 

conversion. Natural Language Processing (NLP) is the main focus in this phase: thus, its 

activities involve techniques from NLP, along with statistical and machine learning 

(Sirmakessis, 2004). The detail of each activity is described in the following subsections.  

2.2.1.1 Preparatory processing.  Preparatory processing converts the raw 

representation of a document such as PDF file, scanned pages, and speech into text 

stream for further processing (Feldman & Sanger, 2007). Various techniques are existed 

such as optical character recognition (OCR), speech recognition, conversion of electronic 

files, and perceptual grouping (Feldman & Sanger, 2007). Tseng et al. (Tseng et al., 

2007) proposed methods which can be considered preparatory processing to prepare text 

for patent analysis. The tasks were included in the first step which was called text 

summarization. They separated subsections by using a regular expression matcher. Then, 

since most patents do follow the standard set of title for subsections, it is able to use Perl 

expressions to match the name of segments to identify each segment. Preparatory 

processing is rarely discussed in research areas of text mining since it is more likely 

beyond the scope. 

In some cases, this stage may be used to identify the documents of interest from 

the document universe. IR techniques may be adopted to help identifying those target 
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documents. Tools for IR include general-purpose search engines such as Google 

(Ananiadou et al., 2006). Besides, there are many tools designed specifically for a 

particular application. For example, Textpresso, Query Chem, iHOP, EBIMed, and 

PubMed are used in biological, biomedical, and chemical areas (Ananiadou et al., 2006). 

2.2.1.2 Text parsing.  The objectives of parsing are to break documents into 

smaller, syntactic chunks as well as assign them syntactic structure (Sirmakessis, 2004). 

Concepts and activities of text parsing are adopted from information extraction (IE) 

process. Recalling parsing in IE, shallow parsing performs well enough; it is widely used 

in many applications, including text mining. Moreover, NLP can be applied here to assist 

concept extraction (Nasukawa & Nagano, 2001). Text parsing activities can be grouped 

into four major categories being described below. 

2.2.1.2.1 Tokenization.  This step breaks the continuous stream of characters in a 

document into meaningful constituents (Feldman & Sanger, 2007). In text mining, the 

task mostly involves breaking text into words and sentences although a document can be 

broken up into chapters, sections, paragraphs, sentences, words, and syllables (Feldman 

& Sanger, 2007). White space characters can be used to separate the words or sentences 

(Coussement, 2008). A period is used to signal the end of the sentence and identify the 

sentence boundary (Feldman & Sanger, 2007). 

2.2.1.2.2 Filtering.  This step separates special characters (i.e., alpha numeric text 

and numerals) and punctuations (i.e., commas, apostrophes, exclamation marks) from the 

original texts (Coussement, 2008) since they are “unwanted texts” which do not help text 

differentiation (Choudhary et al., 2009). 

Not only special characters, removing irrelevant terms can increase the efficiency 

of the text mining process. Rare words which are useless to further analysis should be left 

out (Coussement, 2008). Coussement (2008) eliminated words appearing in the document 

less than three times.  

Also, removing common words frequently occurring from the text is able to 

reduce redundancy and improve the accuracy of the results from text mining process 

since it reduce size of the document and avoid information to be overloaded (Choudhary 

et al., 2009). The words are referred to words which are non-informative parts of speech 

as well as high frequency words which do not contain essential information within the 



www.manaraa.com

19 

 

 

text (Choudhary et al., 2009). These non-informative words are included in a “stop list”. 

However, it is important to be careful not to remove the relevant words. 

In some rare cases, it is possible to use a “start list” to control words to be 

included in the analysis. This allows text miners to examine just only a certain set of 

words of interest and ignore the undesirable ones. 

2.2.1.2.3 Part-of-speech (POS) tagging.  Feldman et al. (2007) defined POS 

tagging as “the annotation of words with the appropriate POS tags based on the context in 

which they appear”. Each POS tag provides the semantic content of each word, for 

instance, prepositions represent relationships among things (Feldman & Sanger, 2007). 

Words can be either an informative or non-informative part of speech (Coussement, 

2008). Non-informative parts include determiners, conjunctions, auxiliaries, preposition, 

pronouns, negative articles or possessive markers, interjections, proper nouns, 

abbreviations, and numbers (Coussement, 2008). Informative parts are nouns, verbs, 

adjectives, and adverbs (Coussement, 2008). The most common set of POS tags contains 

article, noun, verb, adjective, preposition, number, and proper noun (Feldman & Sanger, 

2007). They belong to the informative parts of speech which are meaningful and useful 

for knowledge discovery. 

2.2.1.2.4 Equivalent term handling.  Terms which mean the same thing should 

be treated in the same way. There are various types of situation when these terms appear 

in the documents. Several techniques can be applied to reduce the ambiguity based on the 

use of NLP and ontology. The subsections below are tasks which are commonly 

performed in text mining.  

2.2.1.2.4.1 Stemming.  Stemming performs morphological analysis of words 

(Choudhary et al., 2009) (Feldman & Sanger, 2007) to conflate word variations into a 

single, simplified representative form which is called a stem (Coussement, 2008). For 

instance, “write”, “writes”, “wrote”, “written”, “writing” can be stemmed to “write”. It 

helps reduce document size and represent the document more concisely (Choudhary et 

al., 2009). Moreover, stemming significantly increases retrieval performance as well as 

reduces the corpus dictionary (Coussement, 2008). Dictionary-based stemmer may be 

used to perform the task (Coussement, 2008). The stemmer compares all morphological 

variations with a reference dictionary and applies standard decision rules to suggest the 
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correct stem when a term is not recognized (Coussement, 2008). In addition, an algorithm 

proposed by Porter (1980) can be use in stemming. The algorithm is aggressive in 

removing words’ suffix and made the stemmed words hard to read; thus Tseng et al. 

(2007) modified the algorithm to remove only simple plurals and general suffixes. 

2.2.1.2.4.2 Synonym and entity recognizing.  Providing relationships among 

words that have similar meaning during the pre-process is able to aid the rationalization 

of their relationships during the subsequent mining process (Becker & Wallace, 2006). A 

“synonym list” should be constructed to store the relationships of these equivalent words. 

Not only synonyms, specific names, jargons and compound nouns are also included in 

the list to relate to their simplified term. For example, “gas” and “Freon” mean the same 

thing (Coussement, 2008). There are also spelling variations such as “color” and 

“colour”. Moreover, multiword terms and compound noun can be written in different 

ways, for instance, “thyroid hormone receptor” is sometimes shortened to “thyroid 

receptor”. Same as synonyms, these words can be defined in the synonym list to handle 

ambiguity. Tseng et al. (2007) designed an algorithm for a document concentrating on a 

topic which was likely to mention a set of strings a number of times. They found that a 

correct combination of words was a longest repeated string. Besides, language aspects 

have been changing overtime, especially for jargons and slangs. In the past ten years, no 

one would recognize the words like “facebook”, “hi5”, or “iPhone”. A synonym list 

provided an opportunity for analysts to update these special words from time to time. 

IE techniques can be adopted in text mining to handle domain-specific knowledge 

(Feldman & Sanger, 2007). Some domain-specific documents such as biological, 

chemical, biomedical, and medical documents usually contain special entities (e.g., 

names of protein, enzyme, etc.) Ananiadou et al. (2006) explained the difficulty of entity 

recognition as the naming of entities is often consistent and imprecise. Variety of names 

may be used to denote the same concept. Orthography may be varied such as the use of 

hyphens and slashes as well as upper and lower cases. Some suggested that characters are 

all converted to lower case (Coussement, 2008). Also, abbreviations and acronyms have 

to be handled (e.g., “AIDS” has its canonical form as “Acquired Immune Deficiency 

Syndrome.”) Other than the synonym list, heuristics and/or scoring rules, machine 

learning, and statistical methods are existing methods for acronym recognition.    
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2.2.1.2.4.3 Misspelling handlings.  Moreover, misspelling errors are handled. 

One traditional way to deal with misspellings is comparing all words in the document 

with words in the dictionary (Coussement, 2008; Becker & Wallace, 2006). Unmatched 

words are misspelled ones. According to Becker and Wallace (2006), each misspelled 

term was compared to all correctly spelled terms. Fuzzy matching function can be used to 

suggest which correctly spelled word was the best match to the misspelled one. Then, 

analysts should review the match list and override the recommendation where it is 

needed. This can also be handled by the synonym list. 

2.2.1.3 Term-document frequency matrix conversion.  A vector-space 

approach is commonly employed to convert qualitative representation of documents into 

quantitative one since it is simple as well as has been proved that it is superior or as good 

as the known alternatives (Baeza-Yates & Ribeiro-Neto, 1999). Coussement (2008) 

described the approach as “the mean that original documents are converted into a vector 

in a feature space based on the weighted term frequencies. Each vector component 

reflects the importance of the corresponding term by giving it a weight if the term is 

present or zero otherwise.” The final vector is represented as a term-document frequency 

matrix. 

In the first two steps, the most informative term were selected. Thus, the current 

set of terms is ready to be converted. Base on the term assignment array of Salton and 

McGill (1983), the vector representation of documents can be represented as a term-

document frequency matrix as shown in Table 2.1. Terms are rows and documents are 

columns. Each cell contains a frequency value of the term in the document. In the matrix,  

fi,j is the number of times that term i appears in document j. Albright (2004) described 

this model in detail. The model ignores the context of the documents while provides their 

quantitative representation. 

The resulted matrix is generally sparse and will become much sparse when the 

size of document collection increases since few terms contain in any single document. 

Also, only hundreds of documents can yield thousands of terms. Huge computing time 

and space are required for the analysis. Therefore, reducing dimensions of the matrix can 

improve performance significantly. Singular Value Decomposition (SVD) is a popular 
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technique to deal with dimensional reduction. It projects the sparse, high-dimensional 

matrix into smaller dimensional space. 

 

 

Table 2.1.  M x N Term-Frequency Matrix Representing a Collection of Documents 

Term ID 
Document 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 … Dn

T1 1 f1,1  f1,2 f1,3 f1,4 f1,5 f1,6 f1,7 f1,8 f1,9 f1,10 … f1,n 

T2 2 f2,1  f2,2 f2,3 f2,4 f2,5 f2,6 f2,7 f2,8 f2,9 f2,10 … f2,n 

T3 3 f3,1  f3,2 f3,3 f3,4 f3,5 f3,6 f3,7 f3,8 f3,9 f3,10 … f3,n 

… … … … … … … … … … … … … …

Tm M fm,1  fm,2 fm,3 fm,4 fm,5 fm,6 fm,7 fm,8 fm,9 fm,10 … fm,n

 

  

In addition, another way to improve retrieval performance of the analysis is to 

apply weighting methods (Berry & Browne, 1999). According to Berry and Browne 

(1999), the performance refers to the ability to retrieve relevant information while 

dismiss irrelevant information. Each element of the matrix (ai,j) can be applied weighting 

and represented as 

 

ai,j = Li,jGiDj,         (4) 

 

where Li,j is the frequency weight for term i occurring in document j, Gi is the term 

weight for term i in the collection, and Dj is a document normalization factor indicating 

whether document j is normalized. This equation was originally applied from information 

retrieval for search engine where longer documents have a better chance to contain terms 

matching the query than the shorter ones. Therefore, the document normalization factor 

was included to equalize the length of the document vectors from documents which vary 

in length (Salton & Buckley, 1988). Since this paper focused on text mining and the 
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lengths of the documents in the collection were not varied, the third factor was 

unnecessary and ignored by replacing the variable with 1. Then, the final equation is   

 

ai,j = Li,jGi         (5) 

 

The element ai,j will replace fi,j in Table 1. Defining the appropriate weighting 

depends on characteristics of the document collection. The frequency weights and term 

weights are popular weighting schemes which are described in more detail in the 

following subsections. 

2.2.1.3.1 Frequency weights.  Frequency weight is used to adjust the frequencies 

in the term-by-document matrix to prevent high-frequency, commonly-occurring terms 

from dominating the analysis. Because unique, often rare terms can play a significant role 

in distinguishing between different types of documents, it is normal to try to adjust rare 

term frequencies with a weight factor to give them an opportunity to contribute more to 

the analysis. 

They are functions of the term frequency (Li,j). This factor measures the frequency 

of occurrence of the terms in the document by using a term frequency (TF). Common 

methods include binary and logarithm. Three common weighting schemes are shown 

below where fi,j represents the original frequency of term i appears in document j. 

 

Binary: Li,j =  
1 if term i is in document j

  0 otherwise                          
   or X(fi,j)   (6) 

   

Logarithm: Li,j =  log2(fi,j + 1) (7) 

   

None or 

Term Frequency: 

 

Li,j =  fi,j (8) 

 

Sometimes, a term is repeated in a document for a lot of time; thus, it reflects high 

frequency in the document collection as a whole even though it appears in only one 

document. To reduce the effect from the repetitive terms, Binary and Logarithm can be 
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applied to the term frequency. The Binary method takes no repetitive effect into account 

while Logarithm reduces the effect, but still maintains it in some degree. Therefore, the 

Logarithm is a method in between Binary and None. Moreover, taking log of the raw 

term frequency reduces effects of large differences in frequencies (Dumais, 1991). 

According to Berry and Browne (1999), the selection of appropriate weighting 

methods depends on the vocabulary or word usage patterns for the collection. The simple 

term frequency or none weighting term frequency is sufficient for collection containing 

general vocabularies (e.g., popular magazines, encyclopedias). Binary term frequency 

works well when the term list is short (e.g., the vocabularies are controlled). 

2.2.1.3.2 Term weights.  Term weights are statistical measures used to evaluate 

how important a word is to a document in a collection or corpus. They take word count in 

the document into account. Common methods are 

 

Entropy: Gi =  1 ∑ , ,    (9)

  

GF-IDF: Gi =  ∑ , / ∑ ,  (10)

  

IDF: Gi =  log / ∑ ,  (11)

  

Normal: Gi =  1/ ∑ ,  (12)

  

None: Gi = 1 (13)

 

where fi,j represents the original frequency of term i appears in document j, n is number of 

documents in the collection, as well as 

 

pi =   , / ∑ ,   (14)
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X(fi,j)  =  
1 if term i is in document j

  0 otherwise                          
  (15)

 

According to Berry and Browne (1999), the choice for an appropriate term weight 

depends on the state of the document collection, or how often the collection is likely to 

change. This weighting scheme responds to new vocabulary and affects all rows of the 

matrix. Thus, it is useful when updating of new vocabulary is acceptable or rare such as 

static collections whereas it is disregarded when updating needs to be avoided by using 

none weighting. All of the formulas emphasize words that occur in few documents 

whereas give less weight to terms appearing frequently or in many documents in the 

document collection. Entropy takes the distribution of terms over documents into 

account. Normal is the proportion of times the words occurring in the collection. These 

weighting methods are developed from clustering theory which will be explained more in 

the next subsection. 

2.2.2. Core Mining Processing.  The stage inherits analysis methods from data 

mining such as classification, decision trees, and clustering. Since the goal was to cluster 

comments into several clusters without pre-defined categories, this research only focuses 

on clustering. Clustering method being used in this research was expectation-

maximization (EM). 

Expectation-Maximization (EM):  The Expectation-Maximization (EM) algorithm 

is generally a framework for estimating the parameters of distribution of variables in data 

(Feldman & Sanger, 2007).  It is adapted to the clustering problem as a probabilistic 

clustering technique which is not based on distance unlike the k-means method. 

According to Bradley et al. (1998), EM performed superior to other alternatives for 

statistical modeling purposes. It attempts to group items similar to each other together. In 

general, data is not distributed in the same pattern; thus, some combinations of attributes 

are more preferable than the others. The concept of density estimation is applied to EM, 

in order to identify the dense regions of the probability density of the data source. The 

goal of EM is to identify the parameters of each of k distributions that meet the 

probability of the given items belonging to the cluster. Initially, parameters of k 
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distributions are randomly or externally selected. Then, the algorithm proceeds iteratively 

as described in the following steps (Feldman & Sanger, 2007). 

 Expectation: Compute probability of the item belonging to the cluster by 

using the current parameters of the distributions, and then relabel all items 

accordingly to the probability. 

 Maximization: Using current labels of the items, reestimate the parameters of 

the distributions to maximize the likelihood of the items 

 If the change in log-likelihood after each iteration becomes small, stop the 

process; otherwise, repeat the process again 

Finally, clustering results are labels of the items, generated clusters, attached with 

estimated distributions. 

After text mining process is done, a set of clusters is generated, along with 

assignments of each document to clusters.   

 

 

2.3. ISSUES OF TEXT MINING 

Nowadays, many researches show some common issues in text mining which can 

be problematic and text miners have to be concerned during text mining process. 

2.3.1. A Large Document Collection.  To handle the vast amount of textual 

domain-specific data, the text-mining approach must be highly scalable and robust 

(Uramoto et al., 2004). 

2.3.2. Noninactive Information Extraction (IE) Systems.  It is difficult to apply 

text mining process as well as use both mining functions and trial-and-error approach on 

noninteractive IE systems iteratively to discover hidden knowledge (Uramoto et al., 

2004). 

2.3.3. Ambiguities in Natural Language.  Term variant and ambiguity causes 

difficulty in entity identification (Ananiadou et al., 2006). The same word can express 

different meanings in different contexts (Nasukawa & Nagano, 2001). For example, 

“Lincoln” is a polysemous word which possibly means a city, person, street, school, etc. 

Conversely, different terms can mean similarly or even the same thing (Nasukawa & 

Nagano, 2001). Synonyms (Becker & Wallace, 2006), homonyms (Ananiadou et al., 



www.manaraa.com

27 

 

 

2006), acronyms (Ananiadou et al., 2006), abbreviations, as well as jargons are needed to 

be handled properly. For instance, “NE” represents northeast or northeastern while 

“search” can refer to seek or look for. Compound nouns, which are adjacent words 

meaning one word, also need to be considered as synonyms (Becker & Wallace, 2006). 

In text mining, it is necessary to treat those similar terms identically to avoid sparseness 

of data (Nasukawa & Nagano, 2001). Furthermore, tokenization can be challenging. To 

identify sentence boundaries, it is important to distinguish between a period which closes 

a sentence and the one which part of a previous token such as Mrs. and Sr. (Feldman & 

Sanger, 2007)  

2.3.4. Relationships and Dependencies among Terms.  Co-occurrence words 

may be misinterpreted in their relationships (Nasukawa & Nagano, 2001). For example, 

“He left when she arrived” may lead to misinterpretation of the relationships between 

“he” and “arrived” as well as “she” and “left”. Moreover, “Joe punched Jim” means 

differently from “Jim punched Joe”. Thus, the sequence of terms has to be taken into 

consideration (Nasukawa & Nagano, 2001). 

 

 

2.4. APPLICATIONS IN TEXT MINING  

Text mining is an emerging technology which can be applied to many 

applications. Application areas of text mining include analyzing biomedical documents, 

patents, financial reports, news articles, customer relations management, and medical 

records (Choudhary et al., 2009). Some of these applications are discussed more in detail 

in the following subsections since they relate to the focus of this research. 

2.4.1. Patent Analysis.  Patent documents contain a lot of technical and legal 

terminology as well as are lengthy in size. Thus, the analysis requires heavy effort and 

expertise. Since professional analysts are costly to find and train, the automated systems 

to assist the analysis become in great demand (Tseng et al., 2007). Patent analysis has 

wide applicability to varieties of business regardless of its narrow focus on patent-related 

documents; thus, its solution might be considered a “horizontal” application (Feldman & 

Sanger, 2007). 
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Patent documents are semi-structured since some parts are uniform and formatted 

while some are unstructured containing free texts which are various in length and 

contents (Tseng et al., 2007). Traditionally, patent analyses were based on structured 

information such as filing dates, assignees, or citations (Archibugi & Pianta, 1996). 

Major approaches were bibliometric methods, data mining, and database management 

tools such as OLAP (On-Line Analytical Processing) applications. 

By focusing on simplicity, Tseng et al. (2007) proposed a text-mining 

methodology specialized for full-text patent analysis. Since the patent documents were 

semi-structured, only unstructured data, including title, abstract, claims, and description 

of the invention, were focused. These sections were classified and processed separately. 

The methodology followed the typical process of text mining. They defined a similarity 

function to extract term pairs relevant to the same topics as well as defined a weighting 

function based on term frequencies to select key terms for further analysis. Terms were 

then clustered based on co-occurrence and document were classified based on KNN (K-

Nearest Neighbor) algorithm since it allows effectively clustering on large volume of 

documents, from concepts to topics, and topics to categories. Since single-step clustering 

often resulted in skewed document distributions among clusters, they applied multi-stage 

clustering method which results from the previous stage were considered as super-

documents at the current stage.     

2.4.2. Customer Relations Management (CRM).  Text Mining can be applied to 

assist companies and organizations to better understand their customers and develop 

better relationship with the right customers. The key challenge for many companies is 

developing and increasing more profitable customers, for example, retaining the right 

customers, making them buy more or better products, and making sure that they are 

satisfied with the complaint handling system (Coussement, 2008). Customers’ e-mails, 

online reviews, and call center logs are useful sources to track their opinions and 

perceptive towards a company’s products. However, the valuable information is included 

in a large amount of unstructured textual contents which the company might not have 

much time to continuously monitor. Therefore, text mining plays an important role to 

assist analysts to extract knowledge from unstructured documents containing valuable 

information from customers. The knowledge can be classified by category or sentiment.  
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As examples for applications in CRM, Bartlett and Albright (2008) presented the 

way to implement sentiment classification using text mining to classify movie reviews on 

the website.  In addition, Becker and Wallace (2006) combined text mining, statistical 

process control and a balanced scorecard to eliminate inaccurate manual warranty claim 

coding and reduce the time required to identify the root causes. Furthermore, Segall et al. 

(2009) applied text mining in hotel customer survey data and its data management. 

2.4.3. News Articles Analysis.  News articles are essential sources containing 

huge amounts of social information. Unlike typical text documents, the news reports 

implies special characteristics such as social interests and behavior which are 

continuously changing and have impact of each other. Analysis of the news collection 

provides understanding of the current situation as well as opportunity to forecast the 

future event from the rich information in the news. 

Montes-y-Gómez et al. (2001) presented a text mining method to analyze news 

collections, including newspapers, newswires, and mass media, in order to discover 

interesting facts: trends, associations, and deviations. Trend analysis reflects general 

trends of the societal interests. For instance, inflation is a disappearing topic while 

interest rate is an emerging topic. Ephemeral association discovery defines influence of 

the peak topic on the other topics. Deviation detection discovers irregularities which 

differ from the typical cases. These deviations may convey interesting societal 

implications. Montes-y-Gómez et al. (2001) employed simple statistical representations 

(i.e., frequencies and probability distribution of topics) and statistical measures (i.e., the 

average of the median, standard deviation, and correlation coefficient) to perform the 

analysis. Their research could be applied broadly and did not focus on a particular 

subject. However, there were some analysis systems which were designed for a specific 

area. For example, Pham et al. (2008) demonstrated the analysis framework for mining 

financial news. Since financial analysis involves input from the financial domain experts, 

the systems were designed to allow the experts express in which aspects of the data they 

are interested as well as build a categorical description of news corresponding to their 

interests. 

Not only discovering valuable knowledge which could not be captured by 

traditional analysis, but text mining also provides ability to forecast the future. Yu et al. 
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(2007) performed sentiment analysis on news to present impact of a special event on 

energy demand. The analysis extracted sentiments hidden in a news article and used them 

to compose a time-series pattern or event pattern to indicate short-term demand drivers. 

Sentiments were estimated from positive and negative words used in the news article. 

The event pattern was constructed from plotting the cumulative magnitude, the difference 

of positive and negative sentiments, associated with the news report according to the time 

interval. It presented duration and degree of the impact. Then, the pattern was 

transformed to demand time series adjustment to forecast energy demand fluctuation due 

to the special event such as earthquake and hurricane. 

Besides, competitive intelligence (CI) is highly beneficial in business 

environment. It is a process which the companies inform themselves their rivals’ 

activities and performance (West, 2001) through organized, structured information 

gathering, analysis and processing (Cook & Cook, 2000).  Organizing data is a part of CI 

process. One way to organize a large amount of news articles is clustering the articles 

based on their topics. Mogotsi (2007) explored the main topics addressed in the news 

stories published in a daily newspaper in a particular time period by using clustering 

algorithms. He finally found out that agglomerative clustering performed poorly. 

Moreover, Shah and ElBahesh (2004) proposed a clustering system specific to media 

organization and public relations department. The system automatically grouped related 

news articles based on the content of the entire article, rather than on specific keywords 

or document popularity. They employed three clustering techniques which were k-nearest 

neighbor (KNN), single-link, and hybrid algorithms and found that the hybrid algorithm 

outperformed the others. Similarly, Arora and Bangalore (2005) combined classification 

and clustering to group related sport articles into a tight and accurate cluster. In their 

research, classification took out the articles which did not belong to the domain of 

interest and clustering formed subgroups among the classified articles using the modified 

version of k-nearest neighbor (KNN) and single-link clustering algorithm. In addition, 

real-time information and multi-language understanding are also important to the 

competitive environment as such. To satisfy the needs, Atkinson and Van der Goot 

(2009) presented a new real-time multilingual news monitoring and analysis system 

which extracted information of ‘what’ is happening to ‘whom’ and ‘where’ in the world. 
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2.5. EVALUATION OF THE CIVIL ENGINEERING LEARNING SYSTEM 

Some past studies have been conducted to evaluate the civil engineering learning 

system introducing GIS to civil engineering students enrolling in a typical civil 

engineering program. Hall et al. (2005) evaluated the effectiveness of the learning system 

as well as identified factors contributing the overall effectiveness. They separated 

students into two groups. One group worked on the interactive learning system while the 

other used a board game designed for the lab. Both groups carried out the same lab 

activity under the same experimental condition. They completed a quiz and a post 

experimental questionnaire comprising open-ended questions. The analyses showed that 

the overall effectiveness of the learning system appeared to be good. The students using 

the learning system scored higher on the quiz than those in the other group. Also, the 

qualitative results indicated that the students found the lab was strongly related to “real 

world” engineering as well as motivational and engaging. Moreover, the students 

suggested that additional guidance and context should be provided as well as a more 

elaborate introduction could be added. They also indicated that additional features (i.e., 

options and additional components) could be included in the learning system. 

Tandon et al. (2008) conducted a similar study with the same objectives as the 

study introduced previously. This research collected data from one set of students 

participating a regular lab session by using the learning system. The results corresponded 

to the other research. The students rated the lab session as more motivational, and more 

effective than the class texts. They were even more applicable to the real world learning 

than the class lecture and text books. Besides, quantitative analysis indicated that the 

prime factors contributing the effectiveness of the learning system were holistic learning, 

real world applicability, engagement, and, motivation. The students wanted to understand 

the big picture of what and why they were doing. They preferred the tasks to be 

challenging and practical as they could relate them to the real world. With the real data, 

the students felt more engaged and motivated. The students required a sufficient 

explanation for completing each task.  
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2.6. GROUNDED THEORY (GT) 

In qualitative analysis, the evaluators of the system read, summarized the whole 

document collection, and then used the discovered insights to improve the learning 

system. One emerging approach for qualitative analysis is the Grounded Theory (GT).  

The Grounded Theory (GT) is a qualitative research methodology which enables 

analysts to develop theory explaining the main concern of the population of substantive 

area and how the concern is resolved or processed (Scott, 2009). As opposed to a 

scientific method which generally begins with hypothesis or theory, the GT process starts 

from gathering data, analyzing data, and finally ending with generating theory from the 

collected data. According to Scott (2009), the stages of developing the GT are listed 

below. 

 Identify substantive area 

 Collect data and open code them as collecting where open coding is “the 

analytic process through which concepts are identified and their properties and 

dimensions are discovered in data” (Strauss & Corbin, 1998) 

 Write memos throughout the entire process to define codes and their 

relationships 

 Conduct selective coding and theoretical sampling to recognize the core 

category and main concern 

 Sort memos and find the theoretical code 

 Read the literature 

 Write up theory 

 “Microanalysis” (Strauss & Corbin, 1998) is analysis applied at the early stages 

of developing the GT. According to Strauss and Corbin, microanalysis is “the detailed 

line-by-line analysis necessary at the beginning of a study to generate initial categories 

(with their properties and dimensions) and to suggest relationships among categories; a 

combination of open and axial coding,” where axial coding is “the process of relating 

categories to their subcategories” at “the level of properties and dimensions,” properties 

are “characteristics of a category, the delineation of which defines and gives it meaning,” 

and dimensions are “the range along which general properties of a category vary, giving 

specification to a category and variation to the theory.”  
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In practical, the evaluators first read comments one by one and wrote down an 

initial note for each one of them; where the initial note is the summarized concept of the 

comments. During this step, it required a lot of time and efforts to go through all 

comments in the collection. Then, they performed open coding which defined 

subcategories along with their possible properties and dimensions of each comment based 

on the initial note. Next, axis coding was done to form the high-level categories from the 

subcategories at the level of the defined properties and dimensions. Finally, a category 

was assigned to each comment and all categories defined up to this phase would be used 

to build a model for further analysis and theory creation. The GT will be used for 

analyzing the mental model of the students how they process their learning, which 

learning paths they would prefer, and what they expect from each path. Thus, based on 

their regular paths and expectations, the analysts can redesign the module to make it easy 

for them to understand and use. Figure 2.5 (Macri et al., 2002) illustrates an example of a 

Grounded Theory for resistance to change. 

 

 

 

Figure 2.5. Example of the Grounded Theory (Source: Macri et al., 2002) 
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3. METHODOLOGY AND RESULTS 

3.1. TEXT MINING PROCESS IN SAS ENTERPRISE MINER 

The goal of this research is to extract knowledge from surveys conducted after 

students had accomplished each lab, performing on the civil engineering learning system. 

Feedback from open-ended questions in the surveys was taken as documents. Thus, each 

document of the collection to be analyzed in this research contained a few sentences. The 

nature of the data was not too general since the questions were based on the GIS labs. 

This led the answers possibly contain jargons as well as specific terms used in the 

learning system. On the other hand, students could freely express their opinions in the 

answers which could be anything and then made vocabulary uncontrolled. SAS 

Enterprise Miner was a tool being used throughout the research. 

3.1.1. Pre-Processing.  The original data was gathered electronically as texts and 

no data type conversion was needed. However, it was prepared into a suitable format for 

feeding into the text miner program during preparatory processing. A comma-separated 

values (CSV) file was constructed. This file type is one of the formats supported by SAS. 

It is used to store data in a table where rows contained a list of documents and columns 

represented the author showing the author ID of each text and the text itself. In the table, 

blank cells represented missing comments from students. The sample of the input data 

was shown in Table 3.1. Only the ‘Text’ column was used in the analysis. 

After the input data file was prepared, the model for text mining was created as a 

diagram in SAS Enterprise Miner, displayed in Figure 3.1. The left node was an Input 

Data node where the data file was imported into and the right node was a Text Miner 

node where text mining process would be performed to explore information in the 

document collection. Both nodes were connected via a line. The direction of the arrow 

represented the flow of data. The input data was fed into the text mining process. SAS 

Enterprise Miner took care of tasks automatically based on parameter settings. In text 

parsing, some key parameter settings for the Text Miner node were shown in Table 3.2. 
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Table 3.1. Data fed into SAS Enterprise Miner 

 

 

 

 

Figure 3.1. Model for Text Mining 

 

 

Table 3.2. Parameter Settings of the Text Miner Node for Text Parsing Stage 

Property Value 

Language ENGLISH 

Stop List SASHELP.STOPLIST 

Start List  

Stem Terms Yes 

Punctuation No 

Numbers No 

Different Parts of Speech Yes 
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The documents were in English. No start list was being used since the comments 

were open-ended; thus, it was hard to define all possible key terms. Moreover, the 

document collection was small; it was reasonable to analyze all terms. The default stop 

list is used. Stemming technique was applied. Punctuation and numbers were not 

included in the analysis. Each term was tagged its part-of-speech (POS). Same terms 

having different POSs were recognized as different terms. A synonym list has been 

modified from the default provided by SAS Enterprise Miner. A part of the list is shown 

in Table 3.3. 

 

 

Table 3.3. A Part of the Modified Synonym List 

 

 

 

 Computer, program, application, and software were defined as synonyms. 

Moreover, the list handled misspellings by defining the correct spelling as the parent of 

each misspelled word. For example, the fourth and fifth rows of the list in Table 3.3 were 

created since students sometimes spelled ‘gis’ to ‘gi’ or forgot a hyphen in ‘hands-on’. 

Also, a term-document frequency matrix was derived based on the parameters set for the 

Text Miner node. Table 3.4 shows some of key parameter settings. 

 To improve performance, dimensional reduction technique was applied; thus, the 

“Compute SVD” was set to “Yes”. Singular Value Decomposition (SVD) is a popular 

approach which was also used in this research. It was computed with high resolution. The 

higher resolution yields more SVD dimensions, which summarizes the data set better 

while require more computing resources. The number of SVD dimensions should not be 
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too small to lose concepts and should not be too large to keep noise. Dumais (Dumais, 

1991) performed information retrieval and found that performance increased over the 

first 100 dimensions, hitting the maximum, and then falling off slowly. Also, the higher 

number had been tested in this experiment, but yielded no difference in results. Thus, 100 

seemed to be a good start for the maximum number of SVD dimensions. Moreover, since 

the vocabulary of the collection was not too general and not too controlled, it fit in 

between Binary and None frequency weights. Therefore, Logarithm was an appropriate 

frequency weight applying here. Furthermore, Entropy, GF-IDF, and None were three 

term weighting techniques which had been selected for this experiment. 

 

 

Table 3.4. Parameter Settings for Term-Document Frequency Matrix Conversion Stage 

Property Value 

Compute SVD Yes 

SVD Resolution High 

Max SVD Dimensions 100 

Scale SVD Dimensions No 

Frequency weighting Log 

Term Weight Entropy

 

 

3.1.2. Core Mining Processing.  Clustering technique was applied to cluster 

comments from students into clusters. Table 3.5 shows some key parameter settings for 

this process. Automatically cluster was enabled to allow clustering on the data set. The 

number of clusters was unknown; thus, it was not possible to define the exact number of 

clusters. The maximum number was set to 10 since the document collection was small 

and 10 clusters should be sufficient to cover all ideas. Expectation-maximization (EM) 

clustering technique was being used. The number of descriptive terms was set to 7. This 

number is reasonable for the size of data. Clustering worked on the term-frequency 

matrix after dimensional reduction (i.e., SVD) had been applied. 
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Table 3.5. Parameter Settings for Clustering of Core Mining Processing 

Property Value 

Automatically Cluster Yes 

Exact or Maximum Number Maximum 

Number of Clusters 10 

Cluster Algorithm EXPECTATION-MAXIMIZATION 

Descriptive Terms 7 

What to Cluster SVD Dimensions 

 

 

3.2. RESULTS 

After all required parameters were set appropriately, the Text Miner node was 

run. Different data sets had been tested. They were responses from open-ended questions 

of the surveys performed on different modules in different lab sessions. In this research, 

survey comments from three modules, Environmental, Surveying, and Geotechnical, 

have been fed in the text miner. The complete results from all data sets were summarized 

in Appendix B. In this section, only results from one data set were discussed. The 

resulted clusters from text mining, with three different term weighting algorithms, were 

shown in Tables 3.6, 3.7, and 3.8. The survey comments were collected from 28 students 

who responded to the question “Please list ways in which the lab activity that covered air 

pollution sources and transport could be improved.” Note that the plus sign (+) in front of 

each term means the term is the root term which were stemmed from different variation 

terms. For example, “+ good” can be “good,” “better,” or “worse.” 

 

 

Table 3.6. Clusters from Text Mining with Entropy Term Weighting (Log/Entropy) 

# Descriptive Terms Freq Percentage RMS std. 

1 + make, + step, + short, + do, on, in 18 0.642857142… 0.2152035…

2 answer, + software, no, + good 9 0.321428571… 0.1746291…
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Table 3.7. Clusters from Text Mining with GF-IDF Term Weighting (Log/GF-IDF) 

# Descriptive Terms Freq Percentage RMS std. 

1 + step, + show, on 7 0.25 0.1457834…

2 + software, + good 4 0.14285714… 0.1665495…

3 depth, in 3 0.107142857… 0.2114772…

4 answer, + do, no 5 0.178571428… 0.2013215…

5 + short, do, better, much, + make, + not, + easy 8 0.285714285… 0.1650697…

 

 

Table 3.8. Clusters from Text Mining with IDF Term Weighting (Log/IDF) 

# Descriptive Terms Freq Percentage RMS std. 

1 + make, + short, do, better, air, much, + direction 17 0.607142857… 0.1953363…

2 no, more, explanation, answer, + software, in, + do 10 0.357142857… 0.2106838…

 

 

From the results, descriptions for each cluster were constructed from its 

descriptive terms and shown in Table 3.9. The analysts have to use their domain 

knowledge in the set of documents to construct the descriptions appropriately. In 

addition, the constructed descriptions had been checked and corrected based on the actual 

comments in the collection to ensure that descriptions were relevant to the raw data. 

Consequently, the descriptions for each cluster in Table 3.9 should cover all ideas across 

each cluster. 

From Table 3.9, different weighting methods yielded different number of clusters. 

Log/Entropy, Log/GF-IDF, and Log/IDF resulted in 2, 5, and 2 clusters, respectively. 

Moreover, each cluster was labeled with different sets of descriptive terms. Because the 

number of descriptive terms was set to 7, descriptive terms count for each cluster did not 

exceed the number. In this case, Log/GF-IDF generated 5 clusters, the highest number 

among the others, while each cluster contained the least count of descriptive terms (i.e., 

only 2-3 terms for cluster #1-4). Thus, it seemed that this method pointed out the most 

ideas as well as performed best on distinguishing an idea apart from the others due to the 

number of clusters and the small numbers of descriptive terms. By contrast, it would be 



www.manaraa.com

40 

 

 

more difficult to group terms and construct sentences from the results of the other 

methods since each cluster contained more than one idea. 

 

 

Table 3.9. Descriptions of Each Cluster Constructing from Descriptive Terms 

Cluster 

No. 
Descriptive Terms Descriptions 

Log / Entropy 

1 +make, +step, more, 

+short, +do, on, in 

Make steps shorter. Need or do more on “something.” 

2 answer, +software, no, 

+good 

No answer. Need better software. 

Log / GF-IDF 

1 +step, +show, on Show steps on “something.” 

2 +software, +good Need better software. 

3 depth, in Labs/instructions are too much in depth. 

4 answer, +do, no No answer 

5 +short, do, better, 

much, + make, not, 

+easy 

Shorten “something.” (e.g., lab/steps/descriptions) Make 

“something” (e.g., lab/steps/descriptions) easier. Do 

“something” (e.g., lab/steps/descriptions) better. 

Log / IDF 

1 +make, +short, do, 

better, air, much, 

+direction 

Make better and shorter directions to do the air pollution lab. 

2 No, more, explanation, 

answer, +software, in, 

+do 

No answer. Need more explanation of doing something in the 

software/application. 

 

 

Grouping terms incorrectly may lead to confusion and misunderstanding. For 

example, “no,” “more,” “explanation,” and “answer” could be interpreted to “no 

explanation and more answers”, or “no answer and more explanations.” The two 
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sentences conveyed different meanings and lead to different conclusion. Nevertheless, 

using multiple techniques and combining the results would be able to help resolve 

confusion. For instance, Log/GF-IDF proposed cluster #4 which carried the idea “No 

answer.” When “no” and “answer” were found in cluster #2 from Log/Entropy and 

Log/IDF, an assumption could be made that the two terms should be grouped together. 

Moreover, the common ideas repeating in the clustering results from all methods could be 

assumed as important ideas which actually presented in the collection. For example, 

“make” and “short” appeared in cluster #1, 5, and 1, respectively, from Log/Entropy, 

Log/GF-IDF, and Log/IDF, that was, both of them appeared in the results from all 

weighting techniques being used in this experiment. Therefore, “make ‘something’ 

shorter” could be confirmed as one opinion from the students.    

Not only listing the resulted clusters and their descriptive terms, the program also 

assigned each comment to each cluster. The complete list of cluster assignments of this 

data set was included in the Appendix C. From the list, some comments were assigned to 

“.” cluster. It means that the comments were outliers which contain ideas different from 

majority of the whole collection. Hence, it could not be categorized into a particular 

cluster. This unclassified comment made the total number of frequencies falling in 

clusters (i.e., 27 for this example) less than the total number of all comments in the 

collection (i.e., 28 in this case). Text mining could only capture the repeated ideas which 

were commonly issued by many students. Outliers would be ignored. For instance, a few 

students expressed that videos were helpful, but this idea did not appear in any cluster. 

Moreover, some students not only commented that they needed more explanations, but 

also specified that they wished to see explanations of what they were doing in the 

program and how it pertained to air pollution. However, these clarifications were not 

captured by text mining process because text mining collects “major” concerns, not 

outliers. 

The fewer number of clusters, the more opportunity that a comment would be 

clustered to the correct group. Using clusters from Log/IDF, “Make it easier to 

understand.” could be clustered reasonably to either cluster #1, or 2. Moreover, there was 

one comment “More descriptive instructions. More description of what is being done.” It 

was classified as cluster #1 from Log/Entropy which made sense, whereas was classified 
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as cluster #4 which did not relate to the comment at all. In this data set, Log/Entropy and 

Log/GF-IDF generated 67.86% while Log/IDF yielded 60.71% correctness of clustering. 

The correctness rate was described in more detail in section 4. 
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4. RESULT ANALYSIS AND CONCLUSION 

4.1. COMPARISON OF RESULTS FROM DIFFERENT DATA SETS 

Each module may carry jargons and terms specific to the lab instruction in that 

module. For example, fill site and borrow sites are the names of sites mentioned in the 

instruction of the Geotechnical lab. Thus, the terms "fill" and "borrow" appeared in 

comments from Geotechnical lab, but not in the other comments from then other 

modules. Evaluators needed to be aware of the jargons and did not confuse the specific 

term with the actual ideas hidden in the comments. Moreover, most of feedback 

contained "no answer" so that "no" and "answer" are supposed to be paired if they appear 

in the same set of descriptive terms. 

Similar questions gave similar feedback. There are common ideas extracted from 

all modules. Students thought that the learning system was practical and helpful to 

complete labs. The labs were applicable to the real world, but they were too long and 

needed to be shortened. Besides, the labs needed more explanations and better 

instructions as well as needed to be easier to follow. Videos were useful, but confusing 

and hard to follow. Table 4.1 lists these ideas as well as shows the key terms leading to 

the ideas. 

 

 

Table 4.1. Common Ideas Attached with the Descriptive Terms 

Ideas 
Module / 

Question 
Referenced Results 

Students thought that the 

learning system was practical 

and helpful to complete labs. 

Env. SP09 / 

Q1 

# Descriptive Terms Freq Percentage RMS std. 

2 
answer, + software, 

no, + good 

9 0.32143… 0.17463… 

Env. SP09 / 

Q2 

# Descriptive Terms Freq Percentage RMS std. 

1 
No, answer, + learn, 

gis, + strength, lab 

9 0.32143… 0.18465… 

Env. SP10 / 

Q2 

# Descriptive Terms Freq Percentage RMS std. 

1 

on, lab, helpful, + do, 

+ software, + time, 

would 

32 0.47761… 0.11902… 



www.manaraa.com

44 

 

 

Table 4.1. (Continued) Common Ideas Attached with the Descriptive Terms 

Ideas 
Module / 

Question
Referenced Results 

  Geotech. 

F09 / Q1 

# Descriptive Terms Freq Percentage RMS std. 

2 

+ make, soil, would, + 

do, with, + help, + 

good 

37 0.69811… 0.13828… 

The labs were applicable to 

the real world, but they were 

too long and needed to be 

shortened. 

Env. SP09 

/ Q1 

# Descriptive Terms Freq Percentage RMS std. 

1 
+ make, + step, more, 

+ short, + do, on, in 

18 0.64286… 0.21520… 

Env. SP09 

/ Q2 

# Descriptive Terms Freq Percentage RMS std. 

2 

World, real, real world, 

in, air, + do, air 

pollution, applicable, 

can, could 

15 0.53571… 0.18154… 

Geotech. 

F09 / Q1 

# Descriptive Terms Freq Percentage RMS std. 

1 

class, applicable, gis, + 

learn, new, + software, 

real world 

13 0.24528… 0.13647… 

Sur. SP10 / 

Q1 

# Descriptive Terms Freq Percentage RMS std. 

2 
real, in, + software, 

world, lab, will, + plan 

29 0.74359… 0.19040… 

Besides, the labs needed more 

explanations and better 

instructions as well as needed 

to be easier to follow. 

Env. SP10 

/ Q2 

# Descriptive Terms Freq Percentage RMS std. 

1 
But, long, + continue, 

+ do, hard, but, + not 

21 0.31343… 0.12448… 

Env. SP10 

/ Q6 

# Descriptive Terms Freq Percentage RMS std. 

2 

+ teacher, + 

explanation, more, + 

instruction, + good, 

little, on 

28 0.41791… 0.13375… 

Geotech. 

F09 / Q2 

# Descriptive Terms Freq Percentage RMS std. 

2 

+ instruction, + open, 

follow, explain, zip, + 

easy, + file 

14 0.26415… 0.14488… 
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Table 4.1. (Continued) Common Ideas Attached with the Descriptive Terms 

Ideas 
Module / 

Question 
Referenced Results 

 

Sur. SP10 / 

Q2 

# Descriptive Terms Freq Percentage RMS std. 

1 

in, + not, more, + software, 

+ instruction, could, 

understand 

27 0.69231… 0.18313… 

Videos were useful, but 

confused and hard to 

follow. 

Env. SP10 / 

Q2 

# Descriptive Terms Freq Percentage RMS std. 

2 

Video, + video, hard, 

follow, + confuse, + do, + 

weakness 

35 0.52239… 0.12779… 

Sur. SP10 / 

Q1 

# Descriptive Terms Freq Percentage RMS std. 

2 
Step, on, information, can, 

tool, + video, + help 

8 0.20513… 0.18761… 

 

 

4.2. COMPARISON OF RESULTS FROM TEXT MINING AND THE PRIOR 
EVALUATION 

The past evaluation of the civil engineering learning system was discussed in 

section 2. There were many consistencies in the overall results from those past researches 

and from text mining in this study, described in the previous subsection. Both studies 

resulted in the same conclusions that the lab was applicable to the real world and 

suggested that sufficient and good explanations were important for completing the task. 

The past studies were agreed that the lab was strongly related to “real world” 

engineering. The students rated the lab session as more applicable to the real world 

learning than the class lecture and text books. In addition, the studies claimed that the 

students required additional guidance and context as well as a more elaborate 

introduction. A sufficient explanation was needed for completing each task since the 

students wanted to understand the big picture of what and why they were doing. 

Subsection 4.1 presents the common conclusion of multiple results from text 

mining in general. Students thought that the learning system was practical and helpful to 

complete labs. The labs were applicable to the real world, but they were too long and 

needed to be shortened. Besides, the labs needed more explanations and better 

instructions as well as needed to be easier to follow. 



www.manaraa.com

46 

 

 

Other than these consistencies, there were a few ideas which both analyses 

supplemented each other with different knowledge. Text mining pointed out that the 

videos were useful, but confusing and hard to follow. This point was response from 

different types of questions applied in the past studies; thus, it did not appear in their 

outcome. Moreover, the past studies indicated that the learning system was motivational 

and engaging. This was not the raw input from students, but it was a result interpreted in 

higher level based on the raw opinions. Text mining straightforwardly provided basic 

understanding of the documents without applying any complicated algorithm to interpret 

data in high level; therefore, the point did not appear in the text mining outcome. 

Furthermore, in the past studies, they also included suggestions from the students that 

additional features could be included in the learning system as well as understanding the 

big picture of the lab by adding explanations of what and why they were doing would 

help their learning. These points were in-depth clarifications which were not expressed 

by majority of the students. Thus, text mining did not present the outliers or rare cases 

such these expressions since the outcome from text mining is a set of major concerns of 

the document collection. 

 

 

4.3. EVALUATION OF EFFECTIVENESS 

In order to evaluate effectiveness of the text mining process, the aspects need to 

be considered are the quality of the clusters and the ability to assign comments into the 

most appropriate clusters. 

4.3.1. Quality of the Clusters.  In this research, good clusters are clusters which 

summarize the entire document collection as effectively as the qualitative approach, as 

well as which are attached with understandable descriptive terms, and easy to construct 

sentences from the descriptive terms. Based on these characteristics, two analyses were 

performed. 

First, since the goal of this research was to bring text mining to assist the 

evaluation process of the civil engineering learning system, it is critical to ensure that text 

mining was able to provide insights to the system evaluators as effectively as the non-text 

mining method, or even higher. Thus, the results from text mining and the past qualitative 
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studies had been compared and contrasted, as what explained in subsection 4.2. Text 

mining could capture only main concerns issuing by majority of the students while the 

qualitative method was able to provide outliers or rare cases since it required human 

efforts to read the entire comment collection line-by-line. Nevertheless, the main ideas 

which text mining extracted from the data were consistent with the evaluation from the 

past studies using the qualitative approach.  

Second, descriptive terms, resulted from the text miner, needed to be meaningful 

which the analysts could easily form sentences from. In order to estimate ability to 

construct sentences from the resulted descriptive terms, s survey had been conducted 

among two groups: a non-experienced group comprising ordinary people who never 

experienced GIS or the learning system before, and an experienced group consisting of 

people who are familiar with GIS and the learning system. 

The survey asked the participants to construct sentences from resulted key terms 

from text mining. Outcome from the Environmental module, spring’10 was used. There 

were four open-ended questions; hence, four different data sets of outcome. The 

questions were “Do you feel that the activities (steps) in the GIS lab were redundant 

(repeated)? If so, was redundancy helpful? Why?”, “Please list the strengths and 

weaknesses of the web-based learning system you used for the GIS lab activity.”, “Please 

list the strengths and weaknesses of the GIS lab in terms of its applicability to “real 

world” activities.”, and “Please suggest ways in which the lab activity could be 

improved.” Each data set consisted of three results from three different weighting 

methods, Log/Entropy, Log/GF-IDF, and Log/IDF. The same survey was sent to 

participants from the two groups. As examples, feedback from one data set is depicted in 

Table 4.2. The question is “Please list the strengths and weaknesses of the web-based 

learning system you used for the GIS lab activity.” from the Environmental module, 

spring 2010. 

According to the feedback, the experienced group performed better since he 

constructed sentences which were much more relevant to the original student comments 

than the other group. For instance, in fact, the students complained that the lab took too 

long and they needed more time to work on the lab. The experienced group got the point, 

but the non-experienced group interpreted it that the software is helpful to do the lab on 
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time.  Also, the experienced group was able to know that step by step method was helpful 

which fit the fact; whereas, the non-experienced group misinterpreted it to the software 

would helpful to do the lab on time.  

 

 

Table 4.2. Examples of the Sentences Constructed by the Two Groups  

Weighting Method 

(Frequency Weight / 

Term Weight) 

Clustering Result from 

Text Mining 

Constructed Sentences 

# Descriptive Terms Experienced Non-Experienced 

Log / Entropy 

1 
on, lab, helpful, + do, + 

software, + time, would 

The lab was helpful, more 

time with the software 

The software was 

helpful to do the lab on 

time 

2 
video, hard, follow, + 

confuse, + do, but, + not

The video was hard to 

follow and confusing 

Video was hard to 

follow but not confusing 

to do 

Log / GF-IDF 

1 
but, long, + confuse, + 

do, hard, but, + not 

Not helpful and was long 

and confusing 

It was long and 

confusing to do but not 

hard 

2 

on, + time, step, + 

strength, + do, + step, + 

software 

Step by step method was 

helpful to do software 

The strength of software 

was to do the steps on 

time 

Log / IDF 

1 
on, lab, would, helpful, 

+ do, + software, + time

Lab was helpful with the 

software, more time 

The software would 

helpful to do the lab on 

time 

2 

video, + video, hard, 

follow, + confuse, + do, 

+ weakness 

A weakness was that the 

video was hard to follow 

and confusing 

The  weakness of the 

video was  it was hard 

to follow 

 

 

Not only this data set, the overall result also reflected that ordinary people who 

did not know and access the system before found difficulty to group key terms and made 

some sentences which were not relevant to the actual student comments. By contrast, 

people who were familiar with the system (i.e., lab teaching assistants, and lab designers) 

performed better in forming sentences closely relating to the ideas actually presented in 
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the feedback collection. This was consistent with what Strauss and Corbin (Strauss & 

Corbin, 1998) had defined, “…Experience and knowledge are what sensitizes the 

researcher to significant problems and issues in the data and allows him or her to see 

alternative explanations and to recognize properties and dimensions of emergent 

concepts…” 

4.3.2. Correctness of the Cluster Assignments.  There is no common, well-

defined technique to evaluate the cluster assignments. Different methods were applied, 

mostly based on statistics, in different researches. Bartlett and Albright (2008) used a 

misclassification rate, ranging from 0 to 1, to compare performance of different pre-

processing techniques applying on sentiment analysis. Pang and Lee (2004) defined 

percentage of accuracy to compare results from two machine learning methods: support 

vector machines (SVMs) and Naive Bayes (NB), across different variables. These two 

researches performed sentiment analysis, classifying documents based on sentiments into 

two pre-defined clusters: positive and negative groups. Thus, the nature of the resulted 

clusters was different from this research in a certain degree. In sentiment analysis, the 

clusters are known before text mining process is started. By contrast, clustering has no 

cluster defined before text mining processing. The number of clusters as well as their 

labels can be varied depending on the input data. This makes it is much more difficult to 

define correctness of the clustering assignments since the set of the clusters are not 

confirmed correct.  

Therefore, in this research, the assumption that the clusters resulted from text 

mining are best constructed to summarize the document collection was made, in order to 

evaluate correctness of the clustering assignments. Then, a statistical technique similar to 

the ones used by Bartlett and Albright (2008), and Pang and Lee (2004) was employed. 

This research defined a correctness rate as a quantitative variable which was used to 

evaluate correctness of the clustering assignments. A correctness rate is a ratio of the 

number of comments clustered appropriately to the total number of all comments, where 

a comment clustered appropriately is a comment containing at least one idea relevant to 

the descriptions of the cluster which the comment was assigned to. Equation (16) shows 

the formula for the correctness rate. 

Correctness Rate = #Comments clustered appropriately / #All comments (16) 
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Figure 4.1 illustrated correctness rates calculated from different data sets across 

different modules. These data sets were feedback from different types of questions; thus, 

the dissimilarity of the questions affected the differences in the correctness rates. Each 

weighting scheme did not make much difference in term of correctness. The average 

ranged from 60% to 70%. 

 

 

 

Figure 4.1. Correctness Rates of Clustering Assignments from Different Data Sets 

 

EnvSP09Q2 asked “Please list ways in which the lab activity that covered air 

pollution sources and transport could be improved.” EnvSP10Q3 asked “Please list the 

strengths and weaknesses of the GIS lab in terms of its applicability to “real world” 

activities.” SurSP10Q1 asked “Please list the strengths of the lab activity that covered 

planning utility a route (fiber optic cable), in terms of its effect on learning and 

motivation, and it’s applicability to “real world” engineering.” GeotechF09Q2 asked 

“Please list ways in which the lab activity that covered soil borrow sites could be 

improved.” Note that EnvSP10Q3 and SurSP10Q1 asked questions more directed than 

those in EnvSP09Q2 and GeotechF09Q2; therefore, the feedback was more focused. 

EnvSP10Q3 and SurSP10Q1 specifically queried about strengths and weaknesses, so the 

answers were in the sense of strengths and weaknesses of the learning system. By 
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contrast, EnvSP09Q2 and GeotechF09Q2 asked for suggestions of the way in which the 

lab could be improved. Answers could be anything and more varied. Since text mining 

generally captures main concerns which are repeated a lot of times in the document 

collection, it performs better when texts are less in variation. Hence, EnvSP10Q3 and 

SurSP10Q1 yielded higher values of correctness rate due to their focused response from 

students. 

To make it easier to understand the calculation of correctness rate, the 

computation of the EnvSP09Q2 data set is discussed in more detail as a sample data. For 

example, there are two clusters named “Make it understandable” and “Make it easier and 

shorter.” The comment is “Please make the steps easier.” If the comment is clustered into 

“Make it easier and shorter,” it will be considered clustered appropriately although the 

comment does not say “shorter.” On the other hand, if it is clustered into “Make it 

understandable,” it is not acceptable since none of the idea in the comment relates to 

“understandable.” The calculation of this data set is displayed in Table 4.3. The value 1 

was assigned to the column “Correct?” of the comment which was appropriately 

clustered; otherwise, 0 was assigned. Then, the correctness rate was calculated from this 

column and shown at the end of the table.  

 

 

Table 4.3. Correctness Rate Calculation 

Cluster Correct? Cluster Correct? Cluster Correct?
A 1 1 3 1 1 1

A1 2 0 1 0 1 0
A2 1 1 3 1 2 1
A3 1 1 5 1 1 1
A4 1 1 5 1 1 1
A5 1 1 5 1 1 1
A6 1 1 5 1 1 1
A7 2 0 2 0 2 1
A8 1 1 1 1 1 0
A9 1 1 5 1 1 1

A10 1 0 3 1 1 0
A11 1 1 1 1 1 0
A12 2 1 2 1 2 1

Log/GF-IDFLog/Entropy Log/IDF
Name  (2 clusters)  (5 clusters)  (2 clusters)
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Table 4.3. (Continued) Correctness Rate Calculation 

Cluster Correct? Cluster Correct? Cluster Correct?
A12 2 1 2 1 2 1
A13 . 0 4 0 . 0
A14 2 1 1 0 1 0
A15 1 1 5 1 1 1
A16 1 1 1 1 1 1
A17 2 1 4 1 2 1
A18 2 0 2 0 2 0
A19 2 1 4 1 2 1
A20 2 1 2 1 2 0
A21 1 1 5 1 1 1
A22 1 1 4 0 2 1
A23 1 1 1 1 2 1
A24 1 0 5 1 1 0
A25 1 0 . 0 1 0
A26 2 0 1 0 1 1
A27 1 0 4 0 2 0

67.86% 67.86% 60.71%

Log/GF-IDFLog/Entropy Log/IDF
Name  (2 clusters)  (5 clusters)  (2 clusters)

 

  

  

4.4. CONCLUSION 

Text mining has been used in evaluating surveys of the civil engineering learning 

system and consistent outcome was obtained. The outcome from text mining addressed 

the similar ideas in primary stage of the qualitative analysis. This same set of knowledge 

has been used to improve lab instructions and the learning system itself. 

In text mining, the pre-processing stage is very important and dominates the entire 

process. There are several techniques available to be applied in text mining. Text miners 

have a chance to adopt or ignore techniques based on the nature of their data sets. From 

the experiment in applying text mining in survey comments, text mining is able to cluster 

comments into clusters without pre-defined labels. Attached with each cluster is a set of 

descriptive terms which summarize the idea of each one. Analysts are able to read only 

these descriptive terms, instead of the entire documents, to obtain the ideas of the entire 

collection. 
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The three weighting methods produced different clusters with different 

descriptive terms. Also, the numbers of comments falling into each cluster (i.e., 

frequencies) may be different among results from different weighting methods, even 

when the methods generated the same set of clusters labeled with the same set of key 

terms. Notice that the total number of comments was sometimes not equal to the sums of 

frequencies from all clusters. It means that some comments were not able to be classified 

in any cluster. Those comments were ones containing, other than stop words, rare terms 

(i.e., outliers) which did not occur in the other comments in the collection. Also, there is a 

cluster carrying no descriptive term. Not only blank comments, comments containing few 

key terms were classified in this type of clusters. 

From the results, some limitations and issues of text mining were found. Since 

text mining is a semiautomatic process, it requires human efforts with domain knowledge 

to be involved in some degree. First of all, human effort is required in order to construct 

sentences from the resulted key terms to interpret meanings of each cluster. For example, 

“easy, over, air, less, lab, make, short” may convey the ideas “Make the Air lab easier, 

shorter with fewer (less) steps.” Also, words are stemmed, so analysts have to guess 

which form should be used to construct the sentence. For instance, “easy” can be “easy” 

or “easier”. The student can either think that the lab is easy, or the lab should be made 

easier. This variation can change the meaning of the cluster. Moreover, some words 

which inverse the sentiment of the statement such as ‘not’, ‘never’, and ‘rarely’ are not 

identified which term is their pair. Thus, interpretation might be misled if the text miners 

or analysts are not familiar with the domain and document collection. In addition, outliers 

or extreme cases will be ignored. Text mining captures only important terms which 

represent the main focus or concerns of the document collection as a whole. Some terms 

which occur only in a few documents will not be included in any specific cluster. The 

ideas which differ from majority can hardly be captured by text mining. Sometimes, 

those ideas are important and might be useful since they capture issues which others fail 

to concern. Furthermore, it is hard to define all equivalent terms such as synonyms, 

jargons, and especially misspellings. Besides, the ability to recognize the equivalent 

terms also depends on writing. There are several ways to express the same idea. A phrase 

can be equivalent to a word. For instance, “make it easy” means simplify, but text mining 
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cannot detect that both of them are equal. If the writers wrote documents using totally 

different words and writing styles, text mining might consider those equivalent comments 

as outliers and fail to include the important idea as a cluster. 

Regardless of these limitations, text mining makes it easier to summarize the 

ideas from student comments from a potential large collection of comments. However, to 

yield best performance, the analysts need to work with people who are familiar with the 

system such as instructors and teaching assistants of the classes to construct sentences for 

major ideas. Moreover, combining results from different methods (i.e. Log/Entropy, 

Log/IDF, etc.) will help constructing sentences and benefit analysis of the data. Also, the 

open-ended questions should be designed to fit the usage of text mining and reduce the 

effects from limitations. For instance, text mining cannot detect words inversing 

sentiment such as “not”; thus, a survey should not ask for strengths and weaknesses in the 

same question. Since both aspects are opposite in ideas, asking for them in the same 

question would lead to confusion, mismatch, and wrong conclusion when the analysts try 

to construct sentences from the resulted key terms. Due to the misinterpretation that 

might have, it is better to include only one query into a question. The question “do you 

feel that the activities (steps) in the GIS lab were redundant (repeated)? If so, was 

redundancy helpful? Why?” is not appropriate to analysis by text mining since it contains 

three queries in the question. It should be broken into three separate questions. The 

outcome from this preliminary study could be used to help develop appropriate questions. 

 

4.5. FUTURE WORKS 

   Future works may include effective approaches to evaluate the clustering 

results. Also, sentiment analysis might be helpful for evaluators as well. Classifying the 

comments by sentiment, not by category, predicts whether each comment from students 

is positive or negative. This will assist system evaluators and developers to understand 

students’ satisfaction towards the learning system.  

Furthermore, there is potential to incorporate text mining in the qualitative 

analysis in order to yield the most productive results. It is possible to employ text mining 

in microanalysis, which is the primary stage of the qualitative analysis. Text mining can 

be used to extract initial notes in order to reduce human efforts required to read all 
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comments at the beginning stage of the analysis. Then, human efforts could be put in 

place after that to derive high-level categories from the initial sets. In this case, the 

outliers could be ignored since the main categories were generally broad and were more 

likely to cover all rare cases. Also, the cluster assignments from text mining could be 

linked to the high-level categories. For each comment, it was possible to replace the 

initial cluster, generated by the text mining, with its relevant high-level category, 

constructed by humans. 

In addition, multi-stage clustering can also be applied. The first clustering is for 

extracting initial notes. Then, the initial notes are inputs to the next clustering to obtain 

subcategories. Finally, the final clustering clusters subcategories into major categories.     
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APPENDIX A. 

LAB SURVEY: OPEN-ENDED PART 
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APPENDIX B. 

ALL RESULTS FROM TEXT MINING 
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Question 

Weighting Method 

(Frequency Weight / 

Term Weight) 

Clustering Result 

Please list ways in which the lab 

activity that covered air pollution 

sources and transport could be 

improved. 

 

(Asked 28 students in, Spring’09 lab 

on Environmental module) 

Log / Entropy # Descriptive Terms Freq Percentage RMS std.

1
+ make, + step, + 

short, + do, on, in 

18 0.64286… 0.21520…

2
answer, + software, 

no, + good 

9 0.32143… 0.17463…

Log / GF-IDF # Descriptive Term Freq Percentage RMS std.

1 + step, + show, on 7 0.25 0.14578…

2 + software, + good 4 0.14286… 0.16655…

3 depth, in 3 0.10714… 0.21148…

4 answer, + do, no 5 0.17857… 0.20132…

5

+ short, do, better, 

much, + make, + not, 

+ easy 

8 0.28571… 0.16507…

Log / IDF # Descriptive Terms Freq Percentage RMS std.

1

+ make, + short, do, 

better, air, much, + 

direction 

17 0.60714… 0.19534…

2

no, more, 

explanation, answer, 

+ software, in, + do 

10 0.35714… 0.21068…
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Question 

Weighting 

Method 

(Frequency 

Weight / Term 

Weight) 

Clustering Result 

Please list the strengths of the lab 

activity that covered air pollution 

sources and transport, in terms of its 

effect on learning and motivation, and 

it's applicability to "real world" 

engineering. 

 

(Asked 28 students in, Spring’09 lab on 

Environmental module) 

Log / Entropy # Descriptive Terms Freq Percentage RMS std.

1
no, answer, + learn, 

gis, + strength, lab 

9 0.32143… 0.18465…

2

+ software, + have, 

in, air, + step, + do, 

but, air pollution, 

applicable, can 

18 0.64286… 0.20714…

Log / GF-IDF # Descriptive Terms Freq Percentage RMS std.

1

no, answer, + learn, + 

strength, pollution, 

lab, + software, + 

have  

12 0.42857… 0.21104…

2

world, real, real 

world, in, air, + do, 

air pollution, 

applicable, can, could

15 0.53571… 0.18154…

Log / IDF # Descriptive Terms Freq Percentage RMS std.

1

air, gis, air pollution, 

applicable, can, 

engineering, help, 

may, people, with 

13 0.46429… 0.19145…

2

no, but, answer, + 

learn, + have, lab, + 

not, world, real, real 

world 

14 0.5 0.21222…
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Question 

Weighting Method 

(Frequency Weight / 

Term Weight) 

Clustering Result 

Do you feel that the activities (steps) 

in the GIS lab were redundant 

(repeated)? If so, was redundancy 

helpful? Why? 

 

(Asked 67 students in, Spring’10 lab 

on Environmental module) 

Log / Entropy # Descriptive Terms Freq Percentage RMS std.

1 no, n/a 12 0.17910… 0.09254…

2

yes, helpful, 

redundant, but, + 

learn, + help, + not 

25 0.37313… 0.13324…

3

+ time, + repeat, + do, 

+ step, + have, 

redundancy, no 

27 0.40299… 0.12666…

Log / GF-IDF # Descriptive Terms Freq Percentage RMS std.

1 no, n/a 12 0.17910… 0.09254…

2

first time, first, 

difficult, yes, + do, + 

software, + remember 

17 0.25373… 0.12764…

3
+ make, but, 

redundant, + not 

4 0.05970… 0.12484…

4

+ have, in, + feel, 

step, + do, + not, 

redundant 

31 0.46269… 0.11991…

Log / IDF # Descriptive Terms Freq Percentage RMS std.

1 no, n/a 12 0.17910… 0.09254…

2

+ not, + step, helpful, 

yes, redundant, but, + 

do 

51 0.76119… 0.13558…
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Question 

Weighting Method 

(Frequency Weight / 

Term Weight) 

Clustering Result 

Please list the strengths and 

weaknesses of the web-based 

learning system you used for the 

GIS lab activity. 

 

(Asked 67 students in, Spring’10 

lab on Environmental module) 

Log / Entropy # Descriptive Terms Freq Percentage RMS std.

1

on, lab, helpful, + do, 

+ software, + time, 

would 

32 0.47761… 0.11902…

2

video, hard, follow, + 

confuse, + do, but, + 

not 

34 0.50746… 0.12859…

Log / GF-IDF # Descriptive Terms Freq Percentage RMS std.

1
but, long, + confuse, + 

do, hard, but, + not 

21 0.31343… 0.12448…

2

on, + time, step, + 

strength, + do, + step, 

+ software 

40 0.59701… 0.11449…

Log / IDF # Descriptive Terms Freq Percentage RMS std.

1

on, lab, would, 

helpful, + do, + 

software, + time 

31 0.46269… 0.11813…

2

video, + video, hard, 

follow, + confuse, + 

do, + weakness 

35 0.52239… 0.12779…
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Question 

Weighting Method 

(Frequency Weight / 

Term Weight) 

Clustering Result 

Please list the strengths and 

weaknesses of the GIS lab in terms 

of its applicability to “real world” 

activities. 

 

(Asked 67 students in, Spring’10 

lab on Environmental module) 

Log / Entropy # Descriptive Terms Freq Percentage RMS std.

1

+ allow, out, + activity, 

population, + problem, 

can, see 

23 0.34328… 0.09979…

2
+ relate, real world, 

but, will, gis, data, real 

32 0.47761… 0.13618…

Log / GF-IDF # Descriptive Terms Freq Percentage RMS std.

1

+ would, world, real, + 

not, + do, + problem, 

real world 

32 0.47761… 0.10529…

2

+ area, lab, can, in, 

pollution, see, 

weakness 

27 0.40299… 0.13204…

Log / IDF # Descriptive Terms Freq Percentage RMS std.

1

+ activity, + learn, can, 

with, + weakness, + 

strength, + problem 

29 0.43284… 0.10829…

2

+ relate, real world, 

real, but, + do, data, 

world 

28 0.41791… 0.13327…
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Question 

Weighting Method 

(Frequency Weight / 

Term Weight) 

Clustering Result 

Please suggest ways in 

which the lab activity could 

be improved. 

 

(Asked 67 students in, 

Spring’10 lab on 

Environmental module) 

Log / Entropy # Descriptive Terms Freq Percentage RMS std.

1

+ student, could, + have, 

would, + time, + lab, + 

software 

33 0.49254… 0.11354…

2

+ teacher, long, + good, 

on, more, +instruction, 

little 

24 0.35821… 0.13467…

Log / GF-IDF # Descriptive Terms Freq Percentage RMS std.

1

+ explanation, long, + 

good, + instruction, more, 

ta, little 

28 0.41791… 0.13324…

2
could, + have, + software, 

in, + lab, + student, before 

33 0.49254… 0.10701…

Log / IDF # Descriptive Terms Freq Percentage RMS std.

1

+ student, could, + have, + 

software, + lab, + video, 

before 

29 0.43284… 0.10980…

2

+ teacher, + explanation, 

more, + instruction, + 

good, little, on 

28 0.41791… 0.13374…
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Question 

Weighting Method 

(Frequency 

Weight / Term 

Weight) 

Clustering Result 

Please list the strengths of the lab 

activity that covered soil borrow sites, in 

terms of its effect on learning and 

motivation, and it’s applicability to “real 

world” engineering. 

 

(Asked 53 students in, Fall’09 lab on 

Geotechnical module) 

Log / Entropy # Descriptive Terms Freq Percentage RMS std.

1

class, applicable, 

gis, + learn, new, + 

software, real world

13 0.24528… 0.13647…

2

+ make, soil, 

would, + do, with, 

+ help, + good 

37 0.69811… 0.13828…

Log / GF-IDF # Descriptive Terms Freq Percentage RMS std.

1

+ software, world, 

real world, + have, 

real, in, lab 

33 0.62264… 0.12107…

2 gis, + learn 5 0.09434… 0.10339…

3

+ layer, able, + 

step, soil, + cost, 

see, + help  

10 0.18868… 0.13920…

4 + good 3 0.05660… 0.14939…

Log / IDF # Descriptive Terms Freq Percentage RMS std.

1

world, real world, + 

have, real, + 

software, lab, + do 

30 0.56604… 0.13073…

2

+ layer, + cost, + 

project, different, 

soil, see, gis 

21 0.39622… 0.14518…
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Question 

Weighting Method 

(Frequency Weight / 

Term Weight) 

Clustering Result 

Please list ways in which the lab 

activity that covered soil borrow 

sites could be improved. 

 

(Asked 53 students in, Fall’09 

lab on Geotechnical module) 

Log / Entropy # Descriptive Terms Freq Percentage RMS std.

1
+ make, + open, follow, 

as, + work, class, + good

22 0.41509… 0.12883…

2

may, + complete, 

require, more, + 

software, + site, + do 

30 0.56603… 0.14952…

Log / GF-IDF # Descriptive Terms Freq Percentage RMS std.

1

explanation, over, 

lecture, more, + 

software, + do, could 

25 0.47170… 0.12186…

2

+ instruction, + 

complete, require, 

instead of, + not, +site, 

may 

23 0.43396… 0.14681…

Log / IDF # Descriptive Terms Freq Percentage RMS std.

1
more, + work, time, 

may, require, lab, + site 

37 0.69811… 0.13741…

2

+ instruction, + open, 

follow, explain, zip, + 

easy, + file 

14 0.26415… 0.14488…
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Question 

Weighting Method 

(Frequency 

Weight / Term 

Weight) 

Clustering Result 

Please list the strengths of the lab activity 

that covered planning utility a route (fiber 

optic cable), in terms of its effect on 

learning and motivation, and it’s 

applicability to “real world” engineering. 

 

(Asked 39 students in, Spring’10 lab on 

Surveying module) 

Log / Entropy 
#

Descriptive 

Terms 

Freq Percentage RMS std.

1 answer, no 8 0.20513… 1.47393…

2

real, in, + 

software, world, 

lab, will, + plan 

30 0.76923… 0.19206…

Log / GF-IDF 
#

Descriptive 

Terms 

Freq Percentage RMS std.

1

world, in, no, 

answer, + plan, + 

do, will 

30 0.76923… 0.18303…

2

step, on, 

information, can, 

tool, + video, + 

help 

8 0.20513… 0.18761…

Log / IDF 
#

Descriptive 

Terms 

Freq Percentage RMS std.

1 answer, no 8 0.20513… 5.73612…

2

real, in, + 

software, world, 

lab, will, + plan 

29 0.74359… 0.19040…
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Question 

Weighting Method 

(Frequency Weight / 

Term Weight) 

Clustering Result 

Please list ways in which the lab 

activity that covered planning a 

utility route (fiber optic cable) could 

be improved. 

 

(Asked 39 students in, Spring’10 lab 

on Environmental module) 

Log / Entropy # Descriptive Terms Freq Percentage RMS std.

1 no, answer 9 0.23077… 0.01330…

2

lab, + have, + do, in, 

+ not, more, + 

software 

29 0.74359… 0.18784…

Log / GF-IDF # Descriptive Terms Freq Percentage RMS std.

1

in, + not, more, + 

software, + 

instruction, could, 

understand 

27 0.69231… 0.18313…

2
answer, no, + do, + 

have 

11 0.28205… 0.10787…

Log / IDF # Descriptive Terms Freq Percentage RMS std.

1 answer, no 8 0.20513… 0.00525…

2

lab, + have, + do, in, 

+ not, more, + 

software 

30 0.76923… 0.18770…
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Question: Please list ways in which the lab activity that covered air pollution sources and transport could be improved.

Cluster Correct? Cluster Correct? Cluster Correct?
A Better directions, Clear. 1 1 3 1 1 1
A1 Re-Do 2 0 1 0 1 0
A2 Go more in depth, spend more than one lab on the program. 1 1 3 1 2 1

A3
Make it shorter, you don’t want much when you are bored out of your 
mind.

1 1 5 1 1 1

A4 Make it easier to understand 1 1 5 1 1 1

A5
Make it shorter, may be have it over a couple of days than just once. 
Make the learning curve more graduate.

1 1 5 1 1 1

A6 Make it shorter, make it slightly easier, make it more interesting. 1 1 5 1 1 1
A7 Introduction to the program, not just here and the link good luck. 2 0 2 0 2 1

A8

The movie's that showed each step were good and so were the test 
directions. I was unclear about what I was looking at on each step. We 
finish the whole lab, but was told one of our calc's were diff making 
everything wrong. Need checks.

1 1 1 1 1 0

A9
Cover air pollution sources and transport better, make the GIS part much 
simpler so it can actually be finishe on time.

1 1 5 1 1 1

A10 Too in depth for a starting tutorial. 1 0 3 1 1 0

A11
Liked step by step guidelines. Wanted to know why I was doing the 
steps, what was it showing me? What is the relevance?

1 1 1 1 1 0

A12
The program needs a better explanation as to why you are inputing 
certain information.

2 1 2 1 2 1

A13 Explain what we were doing to us. . 0 4 0 . 0
A14 NA 2 1 1 0 1 0

A15
Don’t do this lab in this class or make it shorter. Start out slow, don’t try 
to make us learn the whole program at once.

1 1 5 1 1 1

Log/GF-IDFLog/Entropy Log/IDF
CommentsName  (2 clusters)  (5 clusters)  (2 clusters)
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Question: Please list ways in which the lab activity that covered air pollution sources and transport could be improved.

Cluster Correct? Cluster Correct? Cluster Correct?
A16 Less technical steps, more focus on air pollution. 1 1 1 1 1 1
A17 No answer 2 1 4 1 2 1

A18
Simplify- this is our first time working with this program and it was really 
confusing.

2 0 2 0 2 0

A19 No answer 2 1 4 1 2 1
A20 Use a program that is easier to understand. 2 1 2 1 2 0
A21 Better organized and set up. More qualitative info. Not as long. 1 1 5 1 1 1
A22 More descriptive instructions. More description of what is being done. 1 1 4 0 2 1
A23 Weakness: No explanation of the meaning of what each step means. 1 1 1 1 2 1
A24 Don’t make so complicated 1 0 5 1 1 0

A25
The video simulation could be correct. It would be helpful to see whats going 
on and the results we are looking for.

1 0 . 0 1 0

A26 Shorten it. 2 0 1 0 1 1

A27
Tell us what we are doing in the program and tell us how it protains to air 
pollution.

1 0 4 0 2 0

% of Correctness 67.86% 67.86% 60.71%

Log/GF-IDFLog/Entropy Log/IDF
CommentsName  (2 clusters)  (5 clusters)  (2 clusters)
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